pipol v5.0.0 pipol v5.0.0 - a shareable cnr-iris query interface



visit this page to learn how to embed a pipol publication list within your web page
Search publications
Authors (e.g. "Rossi, M.; Da Vinci, L.")
CNR institutes (e.g. "ILC; IFC") years (e.g. "2000-")
Search terms (e.g. "nlp; working memory")
updating... updating...
30 records in 6.114 seconds (source: CNR-IRIS)download BibTeX | JSON | copy query link to clipboard
Journal articles
View web resourcesView DOI resources1
Bergoin R., Torcini A., Deco G., Quoy M., and Zamora López G. (2025) “Emergence and maintenance of modularity in neural networks with Hebbian and anti-Hebbian inhibitory STDP”, PLOS COMPUTATIONAL BIOLOGY, ISSN 1553-7358, vol. 21 (4), 35 pages.
View web resourcesView DOI resources2
Politi A. and Torcini A. (2024) “A robust balancing mechanism for spiking neural networks”, CHAOS, ISSN 1054-1500, vol. 34 (4), 8 pages.
View web resourcesView DOI resources3
Coppolino S. and Migliore M. (2023) “An explainable artificial intelligence approach to spatial navigation based on hippocampal circuitry”, NEURAL NETWORKS, ISSN 0893-6080, vol. 163, pp. 97-107.
View web resourcesView DOI resources4
Giordano N., Alia C., Fruzzetti L., Pasquini M., Palla G., Mazzoni A., Micera S., Fogassi L., Bonini L., and Caleo M. (2023) “Fast-Spiking Interneurons of the Premotor Cortex Contribute to Initiation and Execution of Spontaneous Actions”, THE JOURNAL OF NEUROSCIENCE, ISSN 0270-6474, vol. 43 (23), pp. 4234-4250.
View web resourcesView DOI resources5
Coppolino S., Giacopelli G., and Migliore M. (2022) “Sequence Learning in a Single Trial: A Spiking Neurons Model Based on Hippocampal Circuitry”, IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, ISSN 2162-237X.
View web resourcesView DOI resources6
Meneghetti N., Cerri C., Vannini E., Tantillo E., Tottene A., Pietrobon D., Caleo M., and Mazzoni A. (2022) “Synaptic alterations in visual cortex reshape contrast-dependent gamma oscillations and inhibition-excitation ratio in a genetic mouse model of migraine”, THE JOURNAL OF HEADACHE AND PAIN (TESTO STAMP.), ISSN 1129-2369, vol. 23 (1), 18 pages.
View web resourcesView DOI resources7
Yang J., Primo E., Aleja D., Criado R., Boccaletti S., and Alfaro Bittner K. (2022) “Implementing and morphing Boolean gates with adaptive synchronization: The case of spiking neurons”, CHAOS, SOLITONS AND FRACTALS, ISSN 0960-0779, vol. 162, 6 pages.
View web resourcesView DOI resources8
Bi H., Di Volo M., and Torcini A. (2021) “Asynchronous and Coherent Dynamics in Balanced Excitatory-Inhibitory Spiking Networks”, FRONTIERS IN SYSTEMS NEUROSCIENCE, ISSN 1662-5137, vol. 15, 20 pages.
View web resourcesView DOI resources9
Stucchi M., Pittorino F., Volo M. D., Vezzani A., and Burioni R. (2021) “Order symmetry breaking and broad distribution of events in spiking neural networks with continuous membrane potential”, CHAOS, SOLITONS AND FRACTALS, ISSN 0960-0779, vol. 147, pp. 110946-1-110946-8.
View web resourcesView DOI resources10
Trimarco E., Mirino P., and Caligiore D. (2021) “Cortico-Cerebellar Hyper-Connections and Reduced Purkinje Cells Behind Abnormal Eyeblink Conditioning in a Computational Model of Autism Spectrum Disorder”, FRONTIERS IN SYSTEMS NEUROSCIENCE, ISSN 1662-5137, vol. 15, pp. 1-14.
View web resourcesView DOI resources11
Caligiore D., Mannella F., and Baldassarre G. (2019) “Different dopaminergic dysfunctions underlying parkinsonian akinesia and tremor”, FRONTIERS IN NEUROSCIENCE (ONLINE), ISSN 1662-453X, vol. 13 (550), 15 pages.
View web resourcesView DOI resources12
Luccioli S., Angulo Garcia D., and Torcini A. (2019) “Neural activity of heterogeneous inhibitory spiking networks with delay”, PHYSICAL REVIEW. E (PRINT), ISSN 2470-0045, vol. 99 (5), 13 pages.
View web resourcesView DOI resources13
Ullner E., Politi A., and Torcini A. (2018) “Ubiquity of collective irregular dynamics in balanced networks of spiking neurons”, CHAOS, ISSN 1054-1500, vol. 28 (8), 5 pages.
View web resourcesView DOI resources14
Pittorino F., Ibanezberganza M., Di Volo M., Vezzani A., and Burioni R. (2017) “Chaos and Correlated Avalanches in Excitatory Neural Networks with Synaptic Plasticity”, PHYSICAL REVIEW LETTERS, ISSN 1079-7114, vol. 118 (9), pp. 098102-1-098102-5.
View web resourcesView DOI resources15
Bonacini E., Burioni R., Di Volo M., Groppi M., Soresina C., and Vezzani A. (2016) “How single node dynamics enhances synchronization in neural networks with electrical coupling”, CHAOS, SOLITONS AND FRACTALS, ISSN 0960-0779, vol. 85, pp. 32-43.
View web resourcesView DOI resources16
Chersi F., Mirolli M., Pezzulo G., and Baldassarre G. (2013) “A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning”, NEURAL NETWORKS, ISSN 0893-6080, vol. 41, pp. 212-224.
View web resourcesView DOI resources17
Meucci R. (2013) “Experimental study of firing death in a network of chaotic FitzHugh-Nagumo neurons”, PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, ISSN 1539-3755, vol. 87 (2), pp. 022919-022919.
View web resourcesView DOI resources18
Houghton C. and Kreuz T. (2012) “On the efficient calculation of van Rossum distances”, NETWORK, ISSN 0954-898X, vol. 23 (1-2), pp. 48-58.
View web resources19
Biella G. E. M., Liberati D., Storchi R., and Baselli G. (2009) “Extraction and Characterization of Essential Discharge Patterns from Multisite Recordings of Spiking Ongoing Activity”, PLOS ONE, ISSN 1932-6203.
View web resourcesView DOI resources20
Storchi R., Biella G. E. M., Liberati D., and Baselli G. (2009) “Extraction and characterization of essential discharge patterns from multisite recordings of spiking ongoing activity”, PLOS ONE, ISSN 1932-6203, vol. 4, 13 pages.
View web resourcesView DOI resources21
Migliore M., Cannia C., Lytton W., Markram H., and Hines M. L. (2006) “Parallel Network simulations with NEURON”, JOURNAL OF COMPUTATIONAL NEUROSCIENCE, ISSN 0929-5313, vol. 21 (2), pp. 119-129.
View web resourcesView DOI resources22
Zillmer R., Livi R., Politi A., and Torcini A. (2006) “Desynchronization in diluted neural networks”, PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, ISSN 1539-3755, vol. 74, 10 pages.
View web resources23
Rodriguez R., Lansky P., and Di Maio V. (2003) “Vesicular mechanisms and estimates of firing probability in a network of spiking neurons”, PHYSICA D-NONLINEAR PHENOMENA, ISSN 0167-2789, vol. 181, pp. 132-145.
Book chapters
View web resourcesView DOI resources24
Carfora M. F. (2023) “A Review of Stochastic Models of Neuronal Dynamics: From a Single Neuron to Networks”, Trends in Biomathematics: Modeling Epidemiological, Neuronal, and Social Dynamics, ISBN 978-3-031-33049-0, Cham, Heidelberg, New York, Dordrecht, London, Mondaini R. P. (ed.), published by Springer (Cham, Heidelberg, New York, Dordrecht, London, CHE), pp. 137-152.
Conference papers
View web resourcesView DOI resources25
Arena P., Patanè L., Sanalitro D., and Vitanza A. (2018) “Insect-Inspired Body Size Learning Model on a Humanoid Robot”.
View web resources26
Ciszak M., Euzzor S., Tito Arecchi F., and Meucci R. (2013) “Control of dynamical states in a network: firing death and multistability”, 6th International Conference on Physics and Control (PhysCon 2013).
View web resourcesView DOI resources27
Chella A., Rizzo R., and Oliveri A. (2007) “An Application of Spike-Timing-Dependent Plasticity to Readout Circuit for Liquid State Machine”, Proceedings of International Joint Conference on Neural Networks, 2007, ISBN 978-1-4244-1379-9, IEEE International Joint Conference on Neural Networks, New York, published by IEEE (New York, USA), pp. 1441-1445.
View web resourcesView DOI resources28
Riano L., Rizzo R., and Chella A. (2006) “A new Unsupervised Neural Network for Pattern Recognition with Spiking Neurons”, Proceedings of International Joint Conference on Neural Networks, 2006, ISBN 0-7803-9490-9, IEEE International Joint Conference on Neural Networks. IJCNN '06, Washington, DC, published by IEEE Computer Society (Washington, DC, USA), pp. 3903-3910.
View web resources29
Rodriguez R., Lansky P., and Di Maio V. (2002) “Vesicular mechanisms and estimates of firing probability in a network of spiking neurons”, ECMTB2002.
Conference contributions
View web resourcesView DOI resources30
Caligiore D. and Mirino P. (2021) “How the cerebellum and prefrontal cortex cooperate during associative learning”, International Neuroinformatics Coordinating Facility (INCF) Assembly.
rendered in 0.005 seconds | powered by lib_pipol v5.0.0

comphys@ilc.cnr.itComPhys lab @ ILC CNR