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Word storage and processing have traditionally been modelled according to different 

computational paradigms, in line with the classical corner- - models 

of word structure assuming a sharp dissociation between memory and computation 

(Clahsen 1999, Di Sciullo & Williams 1987, Pinker & Prince 1988, Parasada & Pinker 

1993). Even the most radical alternative to dual-route thinking, connectionist one-route 

models, challenged the lexicon-grammar dualism only by providing a neurally-inspired 

mirror image of classical base-to-inflection rules, while largely neglecting issues of lexical 

storage (Rumelhart & McClelland 1986, McClelland & Patterson 2002, Seidenberg & 

McClelland 1989). Recent psycho- and neuro-linguistic evidence, however, supports a 

less deterministic and modular view of the interaction between stored word knowledge 

and on-line processing [Baayen et al. 1997, Hay 2001, Maratsos 2000, Stemberger & 

Middleton 2003, Tabak et al. 2005, Ford et al. 2003, Post et al. 2008). The view entails 

simultaneous activation of distributed patterns of cortical connectivity encoding 

redundant distributional regularities in language data. Furthermore, recent 

developments in morphological theorising question the primacy of grammar rules over 

lexical storage, arguing that word regularities emerge from independent principles of 

lexical organisation, whereby lexical units and constructions are redundantly stored and 

mutually related through entailment relations (Matthews 1991, Corbett & Fraser 1993, 

Pirrelli 2000, Burzio 2004, Booij 2010). We endorse here such a non modular view on 

Morphology to investigate two basic behavioural aspects of human word processing: 

morphological prediction and generalisation. The investigation is based on a computer 

model of morphology acquisition supporting the hypothesis that they both derive from a 

common pool of principles of lexical organisation.  

 

 

 

Morphological generalisation is at the roots of the human ability to develop expectations 

about novel lexical forms, so that some words (say plipped as the past tense of the nonce 

verb plip) are perceived by speakers as more acceptable than other potential competitors 

(e.g. plup or plept for the same base). These expectations can be used to produce novel 

wug words 

(1958), linguists have put considerable effort into trying to unravel conditions for 

generalisations in the morphological competence of both learners and mature speakers 

(Bybee and Pardo, 1981; Bybee and Slobin, 1982; Bybee and Moder, 1983). After the 

advent of connectionism (Rumelhart and McClelland, 1986), the question of what 

structural and formal conditions affect morphological generalisations in humans was 
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coupled with the substantially different question of whether artificial neural networks 

eliminate or rather sub-symbolically implement algebraic productive rules of some kind 

(Smolensky 1988). The ensuing debate went through controversial issues of grammar 

architecture, centred on the hypothesis of a sharp separation between lexicon 

(functionally related to storage) and rules (functionally related to processing). A recent 

reformulation of the problem of morphological generalisation is due to Albright and 

Hayes (2003): given that many morphological processes are known to be productive in 

limited contexts, what sort of computational mechanisms are needed to account for 

context-sensitive restrictions on morphological generalisations? Albright and Hayes 

suggest that speakers conservatively develop structure-based rules of mapping between 

fully-inflected forms. In the orthographic domain, a mapping pattern such as Xs  Xing 

accounts for the word pairs talks-talking, plays-playing, forms-forming etc., but would 

wrongly yield puts-*puting and gives-*giveing. These patterns are based on a cautious 

inductiv

confident in extending a morphological pattern to other forms to the extent that i) the 

pattern obtains for many existing word forms and ii) there is a context-sensitive 

difference between those word forms and word forms that take other patterns. For 

example, a speaker has to induce the more specific pattern Xts  Xtting to cover puts-

putting, sits-sitting, hits-hitting etc. An important point made by Albright and Hayes is 

that patterns apply to similar word pairs, with word similarity being based on a context-

sensitive structural mapping, rather than on a pre-

analogy. Finally, the level of confidence of a speaker in the pattern is defined by the ratio 

between the number of forms undergoing the pattern change and the number of forms 

meeting the context for the pattern change to apply. 

 A number of interesting theoretical implications follow from Albright and 

-route models of morphological competence, 

their minimally generalised patterns are not committed to a derivational conception of 

morphological generalisation, according to which rules define base-to-form mapping 

relations only. Patterns may underlie any pair of intra-paradigmatically related forms. 

This view is easily amenable to a word-and-paradigm conception of the morphological 

lexicon where fully inflected forms are redundantly stored and mutually related through 

entailment relations (Matthews 1991; Pirrelli 2000; Burzio 2004; Blevins 2006). 

relational database than to a general-purpose automaton augmented with lexical storage. 

Nonetheless, mapping patterns adhere to a rule-like manner of stating generalisations, 

providing the necessary and sufficient conditions that a form must meet in order for the 

pattern to apply. Albright and Hayes argue that this does not have to be true for 

variegated analogy to apply, as, in principle, forms undergoing the same pattern change 

may be similar to one another in many different ways, thus going beyond the reach of a 

structural rule-like description of the needed context. Finally, they claim that sensitivity 

to context-based similarity is not a specific condition of unproductive morphological 

processes (as suggested by dual-route modellers), but a hallmark of any morphological 

pattern change. Cautious generalisation is an inherent feature of morphological 

productivity as such. 

  

 

Morphological prediction defines the human capacity to anticipate upcoming known 

words. Unlike generalisation, which refers to the ability to go beyond available evidence 

and compensate for gaps in lexical competence, prediction appears to functionally 

maximise available linguistic evidence (including, but not limited to, lexical competence) 

to entertain hypotheses about the upcoming flow of language input, and make language 

comprehension easier and more efficient. From a more general perspective, experimental 
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studies based on event-related potentials and eye-movement evidence, for example, 

show that people use prior (lexical and semantic) contextual knowledge to anticipate 

upcoming words (Altmann and Kamide 1999; Federmeier 2007). DeLong et al. (2005) 

demonstrate that expected words are pre-activated in the brain in a graded fashion, 

reflecting their expected probability. This provides the empirical ground to probabilistic 

approaches to lexical prediction and gaze planning in reading. Ferro et al. (2010) offer a 

computational model of the interlocked relationship between processes of lexical self-

organisation and active sensing strategies for reading that exploit expectations on stored 

lexical representations to drive gaze planning. This can explain why the capacity to 

repeat non words is a good predictor of whether or not the child is likely to encounter 

reading problems (Baddeley and Gathercole 1992; Gathercole and Pickering 2001).  

 There have been attempts to explain the role of prediction in facilitating 

language comprehension on the basis of the argument that highly predictable words are 

easier to integrate into the linguistic context (e.g. because unexpected words in test 

experiments often violate the grammatical constraints imposed by the context itself). In 

fact, recent evidence goes against this simpler explanation, suggesting that predictions 

can be made at many different levels of language comprehension, including strong biases 

against perfectly grammatical but somewhat rarer or less likely lexical alternatives 

(Staub & Clifton 2006, DeLong et al. 2005). A more intriguing explanation comes from 

evidence of mirror neurons (Wilson & Knoblich 2005) pointing to the observation that 

ns. The use of 

domain where upcoming behaviour is at least sometime predictable and where the 

perceiver can also perform that behaviour. Language in general, and lexical access in 

particular, are cases in point.  

 

 

At its core, the lexicon is the store of words in long-term memory. Any attempt at 

modelling lexical competence must take into account issues of string storage. In this 

respect, the rich cognitive literature on short-term and long-term memory processes 

(Miller 1956; Baddeley and Hitch 1974; Baddeley 1986, 2006; Henson 1998; Cowan 

2001; among others) has had the unquestionable merit of highlighting some fundamental 

issues of coding, maintenance and manipulation of strings of symbols. It is somewhat 

surprising that the linguistic literature on lexical access and organisation, on the one 

hand, and the psycho-cognitive literature on memory processes on the other hand, have 

so far made comparatively sparse contact. This is arguably due to the strong influence of 

the calculator metaphor (Baayen 2007) on mainstream conceptions of the role of the 

lexicon in the grammar architecture. According to the metaphor, the lexicon is only 

storage, an inert repository of item-based, unpredictable information whose nature and 

structure is predetermined, and considered as relatively unproblematic. The 

combinatorial potential of lexical items, on the other hand, is defined by the rules of 

grammar, taking care of processing issues. Contrary to what is commonly held, 

connectionism has failed to offer an alternative view of such an interplay between 

storage and processing. There is no place for the lexicon in classical connectionist 

networks: in this respect, they seem to have adhered to a cornerstone of the rule-based 

approach to morphological inflection, thus providing a neurally-inspired mirror image of 

derivational rules.  

In this paper, we entertain the substantially different view that memory plays a 

fundamental role in lexical modelling, and that computer simulations of memory 

processes can go a long way in addressing issues of lexical acquisition and processing. 

Recent studies of cortico-cortical evoked potentials show a functional bidirectional 

connectivity between anterior and posterior language areas (Matsumoto et al., 2004), 
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pointing to more integrated and dynamic mechanisms underlying language functioning 

in the brain than previously acknowledged. In addition to its well-established linguistic 

music (Maess et al., 2001), working memory and calculation, as well as action execution 

and understanding (Buccino et al., 2001; Fadiga et al., 2009). Taken together these 

structures subserving context-dependent sequence processing in general, and that these 

structures shed considerable light on what we know about lexical organisation, access 

and productivity.  

Human lexical competence is known to require the fundamental ability to retain 

sequences of items (e.g. letters, syllables, morphemes or words) in the working memory 

(Gathercole and Baddeley, 1989; Papagno et al., 1991). Speakers appear to be sensitive to 

frequency effects in the presentation of temporal sequences of verbal stimuli. Items that 

are frequently sequenced together are stored in the Long-Term (LT) Memory as single 

chunks, and accessed and executed as though they had no internal structure. This 

increases fluency and eases comprehension. Moreover, it also explains the possibility to 

retain longer sequences in Short-Term (ST) Memory when familiar chunks are presented. 

The ST span is understood to consist of only a limited number (ranging from 3 to 5 

according to recent estimates, e.g. Cowan 2001) of available store units. A memory chunk 

takes one store unit of the ST span irrespectively of length, thus leaving more room for 

longer sequences to be temporarily retained. Furthermore, chunking produces levels of 

hierarchical organisation of the input stream: what is perceived as a temporal sequence 

of items at one level, may be perceived as a single unit on a higher level, to become part 

of more complex sequences (Hay and Baayen 2003). Finally, parts belonging to high-

frequency chunks tend to resist being perceived as autonomous elements in their own 

frequently used chunks do not participate in larger word families (e.g. inflectional 

paradigms).  

From this perspective, generalisation and prediction can be seen as being in 

competition. Prediction presupposes LT entrenchment of memory chunks as a result of 

repeated exposure to frequent sequences of letters/segments. LT entrenchment 

eventually drives word recognition through anticipatory activation of frequently-

activated chunks. Prediction is thus most accurate when concurrent activation of LT 

chunks is minimised. In information theoretic terms, this is equivalent to minimising the 

entropy over lexical choices. Generalisation, on the other hand, requires that the lexicon 

contains recurrent sub-lexical chunks, which recombine for novel words to be recognised 

as well-formed. This is equivalent to keeping entropy high in the lexicon, making room 

for novel word stimuli. 
  

: A word-trie (left) and a word-graph (right), for the Italian forms 

VEDIAMO CREDIAMO  
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Figure 1 shows examples of lexical structures that can account for these effects. So-called 

-

connected through arcs, under the constraint that no node can be reached by two 

different descending arcs. So-calle -

same node to be reached by multiple arcs, thus using up fewer nodes in representing 

partially overlapping forms. For our present concerns, word-tries can be seen as 

encoding deeply entrenched, dedicated memory structures, whereby partially 

overlapping forms are nevertheless assigned independent representational resources. On 

the other hand, word-graphs allow for shared substrings to be assigned identical 

memory units. As shown below, the two graph types can in fact be conceived of as 

different developmental stages in lexical acquisition. In the ensuing sections, we offer a 

computational model of dynamic memories that can explain the emergence of such 

lexical structures in terms of common computational principles of self-organisation and 

time-bound prediction. 

 

 

 

-Organizing Maps (SOMs) (Kohonen, 2001) define a class of unsupervised 

artificial neural networks that mimics the behaviour of small aggregations of neurons 

(pools) in the cortical areas involved in the classification of sensory data (brain maps). In 

such aggregations, processing consists in the activation of specific neurons upon 

presentation of a particular stimulus. A distinguishing feature of brain maps is their 

topological organisation (Penfield and Roberts, 1959): nearby neurons in the map are 

activated by similar stimuli. Although some brain maps can be pre-determined 

genetically, there is evidence that at least some aspects of their neural connectivity 

emerge through self-organisation as a function of cumulated sensory experience (Kaas et 

al., 1983). Functionally, brain maps are thus dynamic memory stores, directly involved in 

input processing, exhibiting effects of dedicated long-term topological organisation. 

 

 

 

 : Outline architecture of a T2HSOM. Each node in the map is connected with all 

nodes of the input layer. Each connection is a communication channel with no time delay, 

whose synaptic strength is modified through training. Connections on the temporal layer are 

updated with a fixed one-step time delay, based on activity synchronisation between BMU(t  

and BMU(t). Right: Long Term Potentiation (LTP) and Long-Term Depression (LTD) of Hebbian 

connections between consecutively activated nodes in the learning phase. (from Ferro et al., 

2010) 
  

In its typical configuration (Kohonen, 2001), a SOM is a grid of parallel processing nodes 

fully connected to an input layer where incoming stimuli are encoded. Input connections 
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are modelled as weighted communication channels with no time delay, defining a spatial 

layer (SL) of connectivity. In the present work we make use of Topological Temporal 

Hebbian Self-Organizing Maps (T2HSOMs) (Koutnik, 2007; Ferro et al., 2010, 2011), an 

extension of traditional SOMs augmented with re-entrant Hebbian connections defined 

over a temporal layer (TL), encoding probabilistic expectations of time series. Each map 

node is linked to all other nodes through a delayed connection that provides, at time t, 

the activity of all nodes at time t-1 (Fig. 2, left). 

Nodes exhibit a short-term dynamic, based on equation (1) below, and a long-

term dynamic, based on adaptive learning (Ferro et al., 2010). Upon presentation of an 

input stimulus at time t, all map nodes are activated synchronously at different levels 

hi(t), but only the most highly activated one, called the Best Matching Unit (or BMU(t)), is 

selected. Node that the activation equation (1) of node ni at time t is the sum of two 

functions. The first function, hS,i(t), measures how similar the input vector weights of 

node ni are to the current input, and the second one, hT,i(t), how predictable the current 

in 1) determine the relative 

the map sensitive to the specific content of the current input stimulus, while high values 

 

 

(1) BMU(t) = ni = 
Ni ,...1

maxarg
,..1

g { hi(t) } 

 where hi(t) =   hS,i(t) +   hT,i(t)       
 

In the learning phase, at each time t, BMU(t) adjusts its connection weights on both layers 

(SL and TL) and propagates adjustment to neighbouring nodes. On SL, adjustment makes 

connection weights closer to values in the input vector. On TL, adjustment of Hebbian 

connections i) potentiates the strength of association from BMU(t-1) to BMU(t) (and its 

neighbouring nodes), and ii) depresses the strength of association from all other nodes to 

BMU(t) (and its neighbouring nodes) (Fig. 2, right). This amounts to logically enforcing 

the entailment BMU(t)  BMU(t-1), thereby inducing the emergence of dedicated 

patterns of activation over nodes that are reminiscent of word graphs (Fig. 1, left). 
 

 

 

Figure 3: BMU activation chains for vediamo-crediamo on a 20 20 map (left) and their word-

graph representation (right). Shared processing nodes are circled on the map and shaded in 

grey in the word graph.  

 

When a string of letters is presented to the map one character at a time, a temporal chain 

of BMUs is activated. Figure 3 illustrates two such temporal chains, triggered by the 

Italian verb forms crediamo and vediamo 20 

nodes map trained on 30 verb paradigms, sampled from the Italian Treebank corpus 
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(Montemagni et al., 2003) by decreasing values of cumulative paradigm frequency. In the 

figure, each node is labelled with the letter the node is most sensitive to. Pointed arrows 

represent temporal connections linking two consecutively activated nodes, thus 

depicting the temporal sequence of node activation, starting from the beginning-of-word 

chains allow us to inspect the memory patterns that a map develops through training.  

 Although temporal learning is based on first-order re-entrant Hebbian 

connections only (i.e. connections emanating from the immediately preceding BMU), 

nodes can propagate information of their immediate left-context over longer activation 

patterns, thereby simulating orders of memory longer than 1. In Figure 3, both letters D 

in VEDIAMO and CREDIAMO are preceded by E. Nonetheless they recruit two 

two Es were in turn preceded by a different symbol (second-order memory). A Hebbian 

map can thus enforce longer orders of memory through a profligate use of dedicated 

nodes, trading space for time. The trade-off is based on learning, and depends on 

available memory resources and distribution of training data. Upon hitting the ensuing I 

in VEDIAMO and CREDIAMO, the map in Figure 3 recruits the same BMU, showing that the 

map cannot retain higher-order memory events (at least for this specific sequence). The 

distance on the map between two BMUs that respond to identical symbols in different 

input contexts thus reflects the extent to which the map perceives them as similar. By the 

same token, the topological distance between chains of activated BMUs responding to 

similar input strings tells us how well the map is aligning the two strings. This is a 

general problem for morphology induction, arising whenever known symbol patterns are 

presented in novel arrangements, as when speakers are able to spot the Arabic verb root 

shared by kataba ) and yaktubu 

common to machen gemacht   

 

3.1. Inductive Bias and Input recoding 
 

It is useful at this stage to focus on the inductive bias of Hebbian SOMs under specific 

parameter configurations and training conditions. Figure 4 (right) shows the topological 

configuration of a map trained on a uniformly distributed data set of 64 binary strings.  

 

 
Figure 4: Topologies of a T-map (left) and a ST-map (right ) trained on binary strings. Only 

the top left corner of both maps is shown. 

 

The map (henceforth referred to as a Spatio-temporal map or ST-map for short) presents 

coding than to symbol timing. Conversely, the leftt-hand map of Figure 4 (called 

Temporal map or T-map for short), is more sensitive to weights on the temporal 

Symbol coding defines the most external level of clustering for the ST-map, with all nodes 

fired by a specific bit being clustered in the same connected area. In fact, due to the 
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corner of the 

Within each half, several nodes are recruited for different instances of the same bit, as a 

function of their position in the training sequences. The T-map reverses the clustering 

hierarchy, with timing defining the most external level of nesting (Fig. 4, left). Within 

each such external cluster, nodes are specialised for being sensitive to different, 

similarly-

topological space, depending on their time-bound distribution in the training corpus.  

 Differences in topological organisation define the way the two map types 

categorise input symbols (and eventually input sequences). A T-map recodes symbols 

positionally, by recruiting nodes that are sensitive to  say  a 1 in first position (11), a 1 

in second position (12), a 0 in first position (01) and so on and so forth. An ST-map tends 

to categorise instances of the same symbol across different positions in the input. 

Nonetheless, since ST-maps are also sensitive to timing, they are able to distinguish 

instances of the same symbol on the basis of its left context. For example, a 1 preceded by 

a 0 will activate a dedicated 0_1 node, whereas a 1 preceded by another 1 will activate a 

different 1_1 node in the same cluster. The difference is shown in Figure 5, plotting the 

topological dispersion of map nodes by position of input bits for two maps.  

 

 
Figure 5: Topological dispersion of symbols on T- and ST-maps, plotted by their 

position in input words.  

 

The characteristically distinct ways the two maps recode symbols are reminiscent of the 

(Sibley et al. 2008, Davis 2010). It is important to bear in mind, however, that in Hebbian 

maps symbol encoding is not wired-

connectionist architectures. Rather it is the result of a recoding process based on training 

data. The number of positional slots, or the length of the left-context affecting symbol 

combinatorial complexity of the training input and its frequency distribution.  

 

effects on the way input forms are organised and processed through memory structures. 

T-maps are more sensitive to time and can build up stronger expectations over an 

upcoming symbol in activation. Therefore, they are slightly less accurate than ST-maps in 

perceiving known words (as they trust more their own expectations than actual input 

stimuli) and considerably less accurate than ST-maps in perceiving novel words, for 

which they built no expectations in the learning phase. When it comes to recalling stored 

words, however, T-maps are more accurate, as they can rely on more accurate positional 

coding of symbols. On the other hand, ST-maps are weaker in capitalising on past events 

and thus more tolerant towards unexpected symbols. The implication of this is that they 

recall novel input sequences more accurately. More importantly for our present 
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concerns, ST-maps, unlike T-maps, can develop pools of nodes that are specifically 

sensitive to position-independent n-grams. As we shall see in what follows, the notion of 

position-independent n-gram is the closest approximation to the notion of morpheme a 

morphologically complex novel word forms.  

 

4. Experimental design and materials 
 

To investigate the interplay between prediction and generalisation in the morphological 

lexicon, we trained instances of a Temporal (T) and Spatio-temporal (ST) 40 40 T2HSOM 

on Italian and German text excerpts of about 3,000 word tokens, sampled from two 

books of child literature:  Fairy Tales. To 

simulate low-level memory processes for serial order and their impact on morphological 

organisation, only information about raw forms was provided in training. Such a 

preliminary step in the process of morphology acquisition is intended to investigate the 

important but often neglected connection between input word recoding and perception 

of morphological structure.  

 Word 

ist. Word forms are input to a T2HSOM one letter at a time, 

with memory of past letters being recoded through re-entrant Hebbian connections that 

alphabets are written in upper-case. Umlauted characters are written as lower-case 

Brücke ß
beißen). In both cases, pairs of lower-case letters are processed as one symbol. Letters 

are encoded on the input layer as mutually orthogonal, binary vector codes. Identical 

letter codes were used for upper-case letters in both German and Italian. -maps 

and five ST-maps were trained on each language for 100 epochs. In the five T-

ST- After training, we probed the 

memory content of the maps on two basic tasks, using both known word forms (i.e. 

set). Both Italian and German test sets contain unseen word forms belonging to word 

families partially attested in the training set. 

 

4.1. Recoding 
 

The task consists in testing the accuracy of the activation function (1) on both known and 

unknown word forms. For each symbol s shown to the map at time t, we test if the map 

recodes the symbol correctly by activating an appropriate BMU(t) labelled with s. An 

input word is taken to be recoded accurately if all its letters are recoded accurately. 

Activation requires faithful memory traces of the currently input symbol, but is also a 

function of how well the current input symbol is predicted on the basis of past symbols.  
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Figure 6. Left: Activation scores of German Temporal (DE_T) and Spatio-Temporal (DE_ST) maps, 

averaged across multiple instances, tested on unknown German words and Italian word forms. 

Right: Recall scores for German T-maps and ST-maps on unknown German words and Italian 

word forms. 

 

That more than just storage is involved in recoding is shown by the diagram to the right 

of Figure 6, providing accuracy scores for both temporal and spatio-temporal German 

maps, tested on unknown German words and unknown (and unfamiliar) Italian words. 

Although all Italian letters are present in the German alphabet, 35% of Italian words are 

wrongly recoded by the German T-map (DE_T). This is in striking contrast with the 96% 

accuracy of German ST-maps (DE_ST) on the same task and witnesses the higher 

sensitivity of T-maps to built-in expectations over letter n-grams. 

   

4.2. Recall 
 

After Baddeley (1986), we model lexical recall as the task of reinstating a word form soon 

after a map is exposed to it. The experimental protocol is intended to highlight the 

dynamic interaction between short-term integration/sustainment of memory traces and 

long-term storage of lexical information. A N-nodes map is first exposed to an input word 

w of length nw. Its resulting integrated activation pattern Ŷ={ŷ1,…, ŷN}, with 

 

(2) N ,… 1, = i  ,)(maxˆ
,...,2

tyy i
nt

i
w2

 

is input to the same map (nw-1) times. At each time step t BMU(t) is calculated 

according to the activation function (1). A word w is taken to be recalled accurately if for 

each t ranging from 2 to nw, the label of BMU(t) matches the t-th letter in w. The protocol 

is thus intended to assess how well the map can output the appropriate sequence of 

symbols in w upon presentation of the whole activation pattern triggered by w. Results of 

recalling words from the training set are shown in Figure 7, grouped by language and 

map type, and averaged across instances of map type. 
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Figure 7: Recall/activation scores on the German and Italian training sets averaged 

across 5 instances of Temporal and Spatio-Temporal maps.  

 

Note that both temporal and spatio-temporal maps are fairly good at recalling familiar 

words (training set), with a marginally significant but consistent advantage for temporal 

maps. This pattern of results is distinctly reversed in Figure 8, plotting the 

recall/activation ratio on test words, with temporal maps performing consistently worse 

in both languages. Incidentally, both map types perform considerably worse when tested 

on recalling unfamiliar unknown words, as is the case of German maps recalling Italian 

words (see Fig. 6, right).  

  

 
Figure 8: Recall/activation scores on the German and Italian test sets. Scores are 

averaged across 5 instances of Temporal and Spatio-Temporal maps.  

 

5. Data Analysis 
 

To better understand how generalisation works in Hebbian maps, it is useful to look at 

Figure 9, where we assume that a (ST) map trained on three Italian verb forms (VEDIAMO 

VEDETE CREDIAMO CREDETE 

highlighted by grey and red arrows on the 

trained ST-map to the left, are unfolded and vertically arranged in the word graph to the 

right, to emphasise what is shared and what is not shared by activation patterns.  
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Figure 9: BMU activation chains for VEDIAMO-VEDETE-CREDIAMO on a 20 20 map (left) 

and their word-graph representation (right).  

 

The crucial generalisation step here is represented by a red directed arc in the word 

graph, and involves the unattested connection between the root CRED and the ending –
ETE. For the map to entertain this connection, it has to be able to i) generalise over the 

two instances of D in CRED and VED, and ii) align the ensuing ending IAMO in VEDIAMO 

and CREDIAMO. The difference in generalisation potential between T-maps and ST-maps 

demonstrate that both steps are more likely if symbols are recoded in a context-sensitive 

but position-independent way, in keeping with the minimal generalisation requirement 

that rules mapping fully inflected forms are based on the immediate structural context of 

the change (Albright and Hayes 2003).  

 Positional encoding appears to be a more effective strategy in lexical recall, 

suggesting that generalisation and prediction are indeed complementary processing 

functions, serving different purposes. This is quantitatively summarised in Figure 10 and 

Figure 11, where we relate the difference in recall accuracy between the two map types 

to perception of morphological structure, and measures of topological organisation, such 

as length of receptive fields, average per node number of input words and relative 

number of used-up nodes (BMUs).  

 Following Voegtlin (2002), the receptive field of a map node n is defined as the 

common end of all input strings triggering n. For example, if a single node is triggered by 

O VEDIAMO and CREDIAMO only, its receptive field will be EDIAMO. 

Accordingly, evidence that ST-maps have i) significantly longer receptive fields than T-

maps (Fig.10, top), ii) more words triggering a single node on average (Fig. 10, centre), 

and iii) fewer BMUs (Fig. 10, bottom), confirms that they are better at finding recurrent 

substrings in input words. Figure 11 shows how this evidence relates to morphological 

badly 

activation chains of morphologically-related forms are aligned on shared morphemes 

(Marzi et al. 2012). High values here indicate that  say  VEDERE CREDERE 

better correlation between activation patterns and shared morphological structure. In 

turn, this is shown to correlate negatively with accuracy in recalling novel words (Figure 

11, bottom). Scores are given for a few verb inflections only.  
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Figure 10: Measures of topological organisation of temporal and spatio-temporal 

maps on the Italian (left) and German (right) training sets. Scores are averaged 

across 5 instances of each map type.  
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Figure 11: Top: misalignment scores across activation patterns triggered by selected 

inflectional endings on temporal and spatio-temporal maps for both Italian (left) and 

German (right). Centre: misalignment scores for the same set of inflections 

calculated on the test set. Bottom: recall scores of word forms in the test set inflected 

for the selected endings.  

 

An analysis of the errors made by the two map types in recalling known words indicates 

that prediction-based errors are more local, involving letter substitution in specific time 

slots, with no mistakes for letters coming after that slot. Length preservation in the face 

of local errors is what we would expect for words stored and recalled positionally. This is 

confirmed by the average per-word percentage of misrecalled symbols in the two maps: 

about 25% for T-maps and more than 37% for ST-maps on known Italian words; about 

21% for T-maps and 34% for ST-maps on known German words. 

 

6. Concluding remarks 
 

Prediction affects the way we perceive things and events, through anticipation of 

upcoming stimuli and integration of missing or noisy information in the input. In Lexical 

Hebbian maps, prediction is implemented as a process of first-order anticipatory 

activation of to-be-selected BMUs, which presupposes context-driven sensitivity of map 

nodes to time-bound letters/segments. Thanks to such built-in prediction drive and 

accurate recoding of time-bound stimuli through training, Hebbian maps show a 
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remarkable capacity to use past information to process and store the incoming input, 

offering an interesting model of memory-based word processing and recoding.  

 In the computational framework offered here, prediction presupposes a bias for 

past events, under a closed world assumption that what is not currently known to be 

attested is fairly unlikely, if not impossible. From this perspective, lexical items exhibit 

minimally redundant patterns which are based on a strictly positional coding of 

constituent symbols and strong serial connections between them. Morphological 

generalisation, conversely, seems to require the ability to understand unseen forms 

based on the discovery of recurrent sub-lexical constituents (morphemes), whose proper 

coding is context-sensitive but independent of specific positional slots. It is a remarkable 

aspect of the experimental framework reported here that the two strategies of prediction 

and generalisation are in fact the outcome of different parameter configurations of a 

unitary memory model. This has, in our view, a few interesting theoretical implications. 

 The proposed memory framework radically departs from derivational 

approaches to morphological competence, by suggesting that principles of lexical 

organisation may rest on memory self-organisation and recoding, and that rule-like 

morphological generalisations are the outcome of cautious extension of attested 

inflections to different word families than those originally attesting them. This move, in 

our view, blurs not only the traditional linguistic dichotomy between lexicon and rules, 

but also the related but somewhat more general divide between input/output 

 this paper, ways of processing and 

structural properties of input/output representations are in fact mutually implied, as 

representations are not given, pre-existing abstract representations but the outcome of 

an active process of recoding. In turn, processing is memory-driven, with memories of 

past evidence and already structured information being brought to bear on attentional 

and combinatorial strategies.  

 It could be suggested, in line with interactive-activation accounts of word 

processing (Diependaele et al. 2009), that both strategies for memory organisation 

(temporal and spatio-temporal) may simultaneously compete in word processing and 

interact through feedback connections. Temporal maps are better interfaced with the 

level of lexico-semantic representations, while spatio-temporal maps are more conducive 

to structured morpho-orthographic representations. Our computational framework 

allows us to spell out principles of this dynamic interaction in some detail, by putting to 

extensive empirical test detailed alternative hypotheses. For example, we could test the 

view that the relative balance between prediction and generalisation is in fact decided 

dynamically as a function of the stage of acquisition. Item-based learning (Tomasello 

2003) may provide an early advantage to children acquiring the lexicon of their own 

language, as they may find it easier to retrieve and produce a word on the basis of a 

stronger prediction drive. This can be shown in Figure 12, where we compare the 

percentage of correctly recalled words by a T-map and a ST-map through early learning 

epochs, together with their average length (expressed as a percentage over the average 

length of all training words). A T-map recalls more and longer words at early stages, as 

item-based storage is relatively local and instantaneous. Finding morphological structure 

in memorised words, on the other hand, appears to require more time and more 

evidence for sublexical memory structures to be used in word processing, recoding and 

retrieval.  

 Finally, it may well be possible that different languages and morphology types 

favour either strategy. For example, templatic morphologies and Semitic morphologies in 

particular may prove to be more conducive to serial, position-based coding of sub-lexical 

material than more concatenative morphologies are, suggesting that a bias for either 

strategy could develop as the result of learning. Algorithms for morphology acquisition 

should be more valued for their general capacity to adapt themselves to the 
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morphological structure of a target language, rather than for the strength of their 

inductive morphological bias. 

 

  

 
Figure 12: Recall/activation scores and average length of recalled words by early learning epochs 

for T-maps and ST-maps. 
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