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ABSTRACT: Recent experimental evidence on morphological learning 

and processing has prompted a less deterministic and modular view of 

the interaction between stored word knowledge and on-line processing. 

Storing a word in the mental lexicon does not simply entail keeping a 

faithful memory image of that word in the most compact way. It also 

requires encoding and manipulating such image through topological 

structures that are optimally adapted to word production and 

comprehension. Temporal Self-Organizing Maps (THSOMs) are a novel 

model of artificial neural network that keeps time serial information 

through predictive activation chains of receptors encoding both spatial and 

temporal information of input stimuli. The impact of this model on issues 

of lexical organization and morphological processing is investigated in 

detail through a series of simulations shedding light on the dynamics 

between short-term memory (activation), long-term memory (learning) 

and morphological organization of stored word forms (topology).

KEYWORDS: Mental lexicon, morphological structure, word learning, Self-

Organizing Maps, memory, language architecture.

1. INTRODUCTION

In classical “dual-route” models of word processing and learning (Prasada 

& Pinker, 1993; Pinker & Prince, 1988; Pinker & Ullman, 2002, among 

others), lexical roots and affixes are taken to be the basic building blocks 

of morphological competence, on the assumption that the mental lexicon 

is largely “redundancy-free”. The speaker, having identified and stored the 

constituent parts of a word form, proceeds to discard the original word from 

the lexicon. The form is eventually produced by accessing and reassembling 

its parts. The hypothesis endorses a “direct functional correspondence” 

between principles of grammar organization (the lexicon vs. rules dichotomy), 

processing correlates (storage vs. computation) and localization of the cortical 

areas functionally involved in word processing (temporo-parietal vs. frontal 

areas in the human cortex, see Ullman, 2004).

It has been observed (Baayen, 2007) that a direct correspondence 

hypothesis, arguably the most straightforward model of the grammar-
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processing relation (Miller & Chomsky, 1963; Clahsen, 2006), reflects 

an outdated view of lexical storage as more ‘costly’ than computational 

operations. Alternative theoretical models put forward a more nuanced 

“indirect correspondence hypothesis”, based on the emergence of 

morphological regularities from independent principles of lexical 

organization (Corbett & Fraser, 1993; Wunderlich, 1996; Dressler et al., 

2006), whereby fully inflected forms are redundantly stored and mutually 

related through entailment lexical relations (Matthews, 1991; Pirrelli, 2000; 

Burzio, 2004; Blevins, 2006). This view prompts a different computational 

metaphor than traditional dual-route models: a speaker’s lexical knowledge 

corresponds more to one large relational database than to a general-purpose 

automaton augmented with lexical storage (Blevins, 2006), thus supporting 

a “one-route model” of word competence.

Over the past three decades, the psycholinguistic literature has provided 

a large body of empirical evidence intended to test the implications of 

dual-route and one-route models of the mental lexicon. Data, however, 

have so far failed to provide conclusive support to either account. Sub-

word constituents are shown to play a crucial role in the processing and 

representation of morphologically complex words (see McQueen & Cutler, 

1998 and Clahsen, 1999 for overviews). In lexical decision tasks (Taft, 

1979; Whaley, 1978; Balota, 1994, for a review), target lexical bases are 

effectively primed by earlier presentation of regularly-inflected related 

forms (walked m walk), but they are not primed by irregular inflections

(e.g. brought vs. bring). The effect is interpreted as showing that walked 

activates two distinct lexical representations, one for the stem walk and 

the other for the affix -ed. One-route models of morphological processing, 

on the other hand, account for dissociation effects of this kind in terms of 

type/token frequency factors, phonological and semantic similarity, or both 

(e.g. Eddington, 2002; Ellis & Schmid, 1998; Joanisse & Seidenberg, 1999; 

Rueckl & Raveh, 1999).

Recent empirical findings suggest that surface word relations constitute 

a fundamental domain of morphological competence, with particular 

emphasis on the interplay between “form frequency”, “family frequency” 

and “family size” effects within morphologically-based word families 

such as inflectional paradigms (Baayen, Dijkstra & Schreuder, 1997; Taft, 

1979; Hay, 2001; Ford, Marslen-Wilson & Davis, 2003; Lüdeling & De 

Jong, 2002; Moscoso del Prado Martín et al., 2004). Research on speech 

errors (Stemberger & Middleton, 2003) suggests that English present and 

past tense forms are in competition, and that this competition is modulated 

by the a-priori probabilities of the vowels in these forms, even if they are 

regular (Tabak et al., 2005). Maratsos (2000) reports that many individual 

verbs are used by children in both correct and over-generalized forms (e.g. 
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brought and *bringed) for a long period, thus supporting a more dynamic, 

frequency-based competition between regular and irregular forms than 

dual-route accounts are prepared to acknowledge. The assumption that both 

regular and irregular forms are stored in the lexicon seems to go a longer 

way towards a competition-based account.

That more than just storage is involved, however, is suggested by 

interference effects between false morphological friends (or opaque pseudo-

derivations) such as broth and brother, which share a conspicuous word onset 

but are not related morphologically (Longtin et al., 2003; Rastle et al., 2004). 

These and other similar results, observed particularly but not exclusively 

for Semitic languages (see Frost et al., 1997 and more recently Post et al., 

2008), show that as soon as a given letter sequence is fully decomposable 

into morphological formatives, word parsing takes place automatically, prior 

to (or concurrently with) lexical look-up.

To sum up, both associative and dual-mechanism models find it hard to 

account for the entire body of presently available psycholinguistic evidence 

on word learning and processing. All in all, the evidence appears to point 

to a less deterministic and modular view of the interaction between stored 

word knowledge and on-line processing than dual-route approaches are 

ready to acknowledge. For example, if lexical look-up is the first step in 

word processing, then pseudo-affixed monomorphemic words such as 

brother should not undergo decompositional processing because they 

are readily found in the lexicon. As we saw, however, this is contrary to 

evidence on automatic processing. On the other hand, there is no way to 

account for such effects in terms of either variegated analogy (of the 

sort used by example-based approaches) or phonological complexity 

and perceptual subtlety of the input word (as suggested by McClelland 

& Patterson, 2002). Analogies and inflectional rhyming patterns have 

to exhibit a clear morphological status. In current connectionist thinking, 

however, such status is taken to be merely epiphenomenal. 

The currently emerging view sees word processing as the outcome 

of simultaneously activating patterns of cortical connectivity reflecting 

(possibly redundant) distributional regularities in input data at the 

phonological, morpho-syntactic and morpho-semantic levels. At the same 

time, there is evidence to argue for a more complex and differentiated 

neuro-biological substrate for human language than connectionist one-route 

models can posit (Post et al., 2008), suggesting that brain areas devoted to 

language processing maximize the opportunity of using both general and 

specific information simultaneously (Libben, 2006), rather than maximize 

processing efficiency and economy of storage. 

To our knowledge, no current computational model of word 

learning can account for such a complex interaction. Both symbolic and 
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connectionist approaches have so far laid exclusive emphasis on processing 

aspects of word competence only, whereby morphological productivity is 

modelled as the task of outputting a (possibly) unknown word form (say 

a novel inflected form) by taking as input its corresponding lexical base. 

Such a “derivational” approach to word competence (Baayen, 2007) ends 

up obscuring the deep interplay between storage and computation, laying 

emphasis on a merely procedural view of morphological competence as 

the “ability to play a word game”. In classical connectionist architectures 

(Rumelhart & McClelland, 1986), the internal organization of inflected 

forms in the mental lexicon is modelled by the pattern of connections 

between the hidden layer and the output layer in a multilayered perceptron 

trained on mapping lexical bases onto inflected forms (e.g. go m went).

The resulting lexical organization appears to be contingent upon the 

requirements of the task of generating novel forms. In principle, different 

tasks may impose different structures on the mental lexicon. 

In this paper, we shall take a somewhat different approach to the 

problem. In line with the psycholinguistic evidence reviewed above, we 

assume that word storage plays a fundamental role in both word learning 

and processing. The way words are structured in our long-term memory (the 

mental lexicon) is key to understanding the mechanisms governing word 

processing and productivity. This perspective offers a few advantages. First, 

it allows scholars to properly focus on word productivity (the explanandum) 

as the by-product of more basic memory strategies (our explanans) that 

must independently be assumed anyway to account for fundamental aspects 

of word learning (including but not limited to memorization of word 

forms). Secondly, it opens up new promising avenues of scientific inquiry 

by tapping the large body of empirical evidence on short-term and long-

term memorization strategies for serial order (see Baddley, 2007 for a 

comprehensive overview). Furthermore, it gives the opportunity of using 

sophisticated computational models of language-independent memory 

processes (see Botvinick & Plaut, 2006; Brown Preece & Hulme, 2000; 

Henson, 1998; Burgess & Hitch, 1996, among others) to shed light on 

language-specific aspects of word encoding. Finally, it promises to provide 

a comprehensive picture of the complex dynamics between computation 

and memory underlying morphological processing as portrayed by the 

psycho-linguistic and neuro-linguistic literature on the topic. Put in a 

nutshell, the processing of unknown words requires mastering rule-governed 

combinatorial processes. In turn, these processes presuppose knowledge of 

the sub-word units to be combined. We argue that preliminary identification 

of the basic inventory of such units depends on memorization of their 

complex combinations. As we shall see in more detail later in the paper, 

current models of memory for serial order assume a much deeper interaction 
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between stored knowledge and on-line processing. The way information is 

stored reflects the way such information is dynamically represented, and 

eventually accessed and retrieved as patterns of concurrent activation of 

memory areas. According to the view endorsed here, memory can “both 

hold information and manipulate it”. This is a far cry from traditional 

computational devices for storage allocation and serial order representation 

(such as ordered sets, strings and the like) which provide built-in means of 

serializing order information through chains of pointers which are accessed 

and manipulated by independently required recursive algorithms.

The paper is structured as follows. We first offer an overview of issues 

of memory for serial order (sections 2 and 3) to then move on to their 

possible connections with aspects of parallel lexical processing (section 

4). A few computer simulations with a novel family of Kohonen’s Self-

Organizing Maps (SOMs) are then shown in section 5, followed by a 

general discussion and some concluding remarks (sections 6 and 7). 

2. MEMORY FOR SERIAL ORDER

A fundamental characteristic of the human language faculty is the ability 

to retain sequences of items (e.g. letters, syllables, morphemes or words) 

in the so-called “Short Term Memory” (STM). Since Baddeley & Hitch’s 

pioneering work, the processing mechanisms underlying human STM have 

been understood within an influential model of working memory based on the 

so-called phonological loop (Baddeley & Hitch, 1974; Baddeley, 1986, 2006). 

The model is assumed to contain three separate but interacting components of 

limited capacity: a “central executive”, responsible for attention and control 

processes, and two slave buffer stores, one specialized for containing visuo-

spatial information, the other for containing verbal information. In particular, 

the verbal buffer comprises a temporary phonological store in which auditory 

memory traces decay over a period of few seconds, unless they are refreshed 

through repeated (either overt or covert) vocalization. The mechanism, 

known as the “phonological loop”, reflects the rather common experience of 

repeated articulation of a telephone number for long enough to be able to 

dial it, and explains a variety of behavioural facts about repetition of word 

sequences (Baddeley, 1966, 1974), including defectiveness of the short-

term phonological store in patients with specific central articulatory deficits 

(aphasic patients with dyspraxia, Waters, 1992). Over the last few years, 

there has been growing recognition of the deep connection between STM 

and language processing (Baddeley, 2003). Lexicon and grammar appear to 

be strongly interconnected in this perspective, as they are both “Long-Term 

Memory” (LTM) containers. 
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2.1 Factors affecting STM 

2.1.1 Length effects

Human subjects are reported to accurately recall up to “five/six arbitrary 

items” in a one-off sequence. However, they find it increasingly hard to 

accomplish the same task as soon as the length of a sequence exceeds the 

five units. Since Miller’s (1956) pioneering work, scholars have investigated 

the growing difficulty of immediately recalling longer arbitrary sequences in 

terms of limits in the STM “storage capacity”. Storage capacity defines the 

maximum number of memory traces whose activation can concurrently be 

sustained through a short time interval with no rehearsal and no support of 

long term knowledge (see Cowan, 2001, for an overview). When performance 

is suboptimal, accuracy in item recall is distributed across the sequence 

unevenly, with a characteristic U-shaped pattern: early items happen to be 

reported more accurately than later items (“primacy gradient”), with final 

items being less prone to errors than items in the middle (“recency gradient”). 

2.1.2 Transpositions and inherent similarity effects

The most common errors in serial recall are order errors or “transpositions”. 

An aspect of these errors is their distribution in the sequence: erroneous 

items are mostly recalled in a position that clusters around their correct 

position, rather than being randomly distributed. For example the string 

trap is often mistyped as tarp, where at the point where an r should be 

produced an upcoming a is produced instead, to be eventually suppressed 

at the next stage, replaced by the missing r. This provides evidence that 

upcoming responses are already active before the point in time at which 

they are produced, thereby accounting for co-articulation effects in serial 

recall, in which production of the current item in the sequence is affected 

by anticipation of the upcoming item. Consequences of parallel competing 

activations of consecutive items are also witnessed in so-called “similarity” 

effects upon recall: serial recall of lists of similar items is considerably worse 

than recall of lists of dissimilar items. Accordingly, recall of the sequence 

<trap, crap, dark> should be more difficult than recall of the list <trap, dog, 

smell>, due to the greater confusability of items in the first list.

2.1.3 Grouping

Another important factor that appears to influence human performance in 

immediate serial recall is provided by the temporal rhythm with which verbal 

items are presented. Performance is enhanced by presenting items with a 
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specific temporal grouping, as opposed to an evenly-spaced presentation 

(Hebb, 1961). The incidence of order errors in recall decreases between 

items that occupy different within-group positions (Frankish, 1985), thereby 

pointing to a notion of inter-item confusability that rests on distributional 

(as opposed to phonological or merely formal) similarity. For example, 

phonological segments that form the onset of adjacent syllables tend to be 

recalled in reversed order, as in classical slips of the tongue like car park 

m par cark. A second type of positional errors is found between trials.

An erroneous item in one recalled sequence is more likely than chance to 

have occurred at the same position in the previous sequence (Conrad, 1960; 

Estes, 1991). In the STM literature, this evidence is typically interpreted 

as supporting the idea of “disjunctive memory representations” for list 

items (their content) and for their position in the list (their context). In fact, 

confusion between contextually similar items is a hallmark of linguistic 

structure. Units that occupy the same position and are mutually substitutable 

in context tend to be classified as instances of the same type and are hence 

more likely confused. Grouping effects on serial recall thus shed light on the 

relationship between serial recall and structure. 

2.1.4 Chunking

Serial sequences are known to be recalled more easily if they are repeatedly 

encountered in the subject’s input. If asked to recall a sequence of random 

words, subjects begin to make errors once the sequence is longer than six. If 

the words are concatenated in a meaningful sentence, however, then a span 

of 16 or more words is recalled correctly (Baddeley, 2000). This shows that 

subjects use long-term information to integrate the constituent words into 

a smaller number of “chunks” (Miller, 1956). Chunk integration causes the 

STM capacity (or span) to be set by the number of chunks, rather than the 

number of items. 

2.2 STM, LTM and the mental lexicon

Aspects of the phonological loop underlying verbal short-term memory also 

underlie “vocabulary acquisition”. Gathercole & Baddeley (1989) describe 

a group of children with Specific Language Impairment (SLI), whose 

limited capacity of repeating a sequence of words was found to be highly 

correlated with a strongly impaired ability to repeat “nonword items” and a 

comparatively impoverished vocabulary. Such a deep interconnection between 

immediate serial recall, nonword repetition and vocabulary acquisition has 

been confirmed by a large array of empirical and experimental evidence 
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on both adults and infants (Papagno et al., 1991; Service, 1992; Shallice & 

Vallar, 1990, to mention a few). Lexical acquisition hence requires the full 

capacity of retaining temporal sequences of items. 

Various aspects of lexical storage are accountable in terms of basic 

mechanisms of memory for serial order. Lexical items are known to be 

stored “in waves”, with confusable items usually having similar beginnings 

and similar endings (e.g. anecdote vs. antidote, musician vs. magician), with 

initial sounds being more confusable in short words and final sounds being 

more confusable in longer words. The phenomenon, known after Aitchison 

(1994) as the “bathtub effect”, is not just due to selective attention, but 

appears to reflect primacy and recency memory gradients familiar from the 

literature on STM. Despite extensive patterns of redundant morphological 

structure, chunking is ubiquitous in the mental lexicon. Contrary to 

traditional wisdom in dual-route approaches, storage of morphologically 

complex full forms is not restricted to irregular words (but see Pinker & 

Ulman, 2002 for qualifications of this point). Regular word forms may also 

leave whole memory traces in the mental lexicon if their frequency falls 

above a certain threshold (6 per million, according to Alegre & Gordon, 

1999, but see De Vaan et al., 2007 for different estimates). Typically, a 

word frequency effect goes hand in hand with the absence of both stem and 

affix frequency effects, supporting the idea that whole word entrenchment 

blurs morphological structure, with the whole taking precedence over its 

parts. This is not to deny the existence and functional role of morphological 

structure in the mental lexicon. As observed by Hay & Baayen (2005), 

stems and affixes may well develop their own lexical representations. 

Nonetheless, such representations crucially depend, for their existence, on 

the continuing degree of probabilistic support received from the network of 

long-term associative paradigmatic relations. 

We may wonder about the possible advantages that chunking offers for 

lexical processing. One of them is “predictive selection” of the most likely 

input sequences, with consequent probability-driven elimination of unlikely 

(but possible) segmentations. Experimental studies based on event-related 

potentials and eye-movement evidence, for example, show that people use 

prior (lexical and semantic) contextual knowledge to anticipate upcoming 

words (Altmann & Kamide, 1999; Federmeier, 2007). DeLong et al. 

(2005) demonstrate that expected words are pre-activated in the brain in a 

graded fashion, reflecting their expected probability. This provides a solid 

empirical ground to probabilistic approaches to lexical prediction and gaze 

planning. Ferro et al. (2010) offer a computational model of the interlocked 

relationship between processes of lexical self-organization and active 

sensing strategies for reading that exploit expectations on stored lexical 

representations to drive gaze planning. This can explain why the capacity to 
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repeat non words is a good predictor of whether or not the child is likely to 

encounter reading problems (Baddeley & Gathercole, 1992; Gathercole & 

Pickering, 2001). 

Predictive selection is not the only advantage offered by chunking. 

The STM literature shows that storage may play a fundamental role in 

“language processing”. Since a chunk takes one store unit of the short-

term span irrespectively of length, chunking augments the capacity of the 

STM system to maintain and manipulate longer and more complex input 

sequences. In principle, the process is unbounded. By recursive application 

of chunking, once a temporal sequence of items is perceived as a single 

unit, it may be part of complex sequences of chunks, thereby producing 

levels of hierarchical organization of the input stream. 

Given the combined evidence reviewed here, two general points can be 

made. First, the strong interaction between long-term and short-term storage 

appears to put a premium on “context-sensitive redundancy”, “fluency” and 

“chunking”, while penalizing autonomy of chunk-internal units, as they 

crucially undermine the beneficial effect of chunking on the STM span. 

Secondly, given a level of chunking, not all chunks are equally frequent. 

Some chunk-internal units are more frequent than others and some within-

chunk transitions from one unit to its successors are more predictable than 

others. This sheds light on another important fact about chunking in lexical 

storage: the inherent probabilistic gradedness of lexical structure (Hay & 

Baayen, 2005).

3. COMPUTATIONAL MODELLING OF SERIAL MEMORIES

How do we manage to recall and repeat sequences of serially-ordered 

items? What kind of available brain memory structures and internalized 

representations provide support to the ordered activation of items in time? 

Obtaining serial recall from a biologically inspired, parallel system is a 

far from trivial task. Three basic mechanisms have been suggested in the 

computational literature to deal with the storage and retrieval of serial order: 

i) item chaining, ii) time-bound parallel activation of competing items, and

iii) association of items with positional slots. The models making use of

each such mechanism are known in the literature respectively as “chaining 

models”, “ordinal models” and “positional models”. 

3.1 Chaining models

Some of the earliest psychological accounts of serial order postulate that 

action sequences are represented as chains made up of unidirectional 
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stimulus−response links. The simplest chaining models assume only pairwise 

associations between adjacent elements of a sequence (e.g. Wickelgren, 

1965) and cues that consist of the preceding response only. This is equivalent 

to Markov first-order models, where the probability of having ‘C’ in the 

sequence ‘ABC’ is entirely determined by the conditional probability of 

finding ‘C’ given ‘B’. Higher-order Markov models can be construed. 

For example, the probability of finding ‘C’ in the sequence ‘ABC’ can be 

conditional on the probability of finding both ‘A’ and ‘B’ preceding it. This 

can be scaled up to higher order contexts, assuming remote associations as 

well as adjacent ones (e.g., Ebbinghaus, 1964; Slamecka, 1985; Elman, 1990; 

Jordan, 1986). 

Criticism of chaining models goes back to pioneering work by Lashley 

in the 50’s (see Lashley, 1951; Houghton & Hartley, 1995, for an extensive 

review). It is commonly pointed out (most recently by Henson, 1998) 

that chaining models are token-based and that they typically face the 

problem of distinguishing repeated elements in a sequence. For example, 

in order to represent a word like ‘#EVERY#’ as a sequence of associative 

links between characters, ‘E’ must be linked to both ‘V’ and ‘R’. Hence, 

in recalling the word ‘#EVERY#’ by going through a chain of links, it is 

not clear which item should follow the first instance of ‘E’. Higher order 

models overcome this problem, but only at the expense of using distinct 

token representations (e.g. the bigrams ‘#E’ and ‘VE’) as instances of the 

same type ‘E’. We shall return later to this style of symbol representation, 

known in the literature as “conjunctive coding”, in Section 4 below.

3.2 Ordinal models

One of the basic insights of Lashley’s seminal work was that immediate 

recall of the order of appearance in a sequence of input stimuli requires 

their parallel activation and a conflict resolution mechanism governing 

their mutual competition. All input stimuli call for selection through their 

background activation, like customers at a crowded bar trying to attract the 

attention of a single bartender. Customers are still served one at a time but 

no ordered structure exists. 

Ordinal models reflect this basic insight. Elements are encoded along 

a single dimension representing their strength of activation. Order is then 

defined by the relative values on that dimension. Grossberg (1978) assumes 

that order is stored in a primacy gradient of strengths, such that each 

element is stronger than its successor. In so-called “competitive queuing” 

models (Grossberg, 1978; Houghton, 1990) the order of elements can be 

retrieved by the iterative process of selecting the strongest element and then 

suppressing it (Page & Norris, 1998). Unlike chaining, ordinal models are 
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effective in explaining transposition errors. Random oscillations in levels 

of item-wise activation make adjacent items more likely to be transposed, 

as their activation levels are closer and thus more likely to be confused in 

retrieval. Yet, ordinal models are subject to problems of item repetition in 

the same sequence, as in the example of ‘#EVERY#’ mentioned above.

3.3 Positional models

In positional models, items are associated with memory slots and retrieved 

by accessing their separate addresses in memory. Many positional models 

exist that try to specify the exact nature of the positional codes and their 

mathematical and psycho-physiological correlates (see Brown Preece & 

Hulme, 2000; Henson, 1998; Burgess & Hitch, 1996, among others). In all of 

them, each occurrence of an item is assumed to create a new token in short-

term memory (as in multiple-trace theories, e.g., Hintzman, 1986). These 

tokens are episodic records that a particular item occurred in a particular 

spatiotemporal context. Hence, representation of an item at the start of 

a sequence is quite different from the representation of the same item at 

the end of a sequence. STM is not viewed as a subset of active long-term 

memory representations (Cowan, 1993), but as a set of new, episodic tokens, 

thus allowing for representation of sequences with repeated items (Henson, 

1996). 

There is, however, at least one area that has proven challenging for 

positional models. This involves cases where serial recall is influenced 

by long-term, or background knowledge about sequential structure (see 

Baddeley, 1964 among others). Strings of letters, for example, are found 

to be better recalled if adjacent items are also likely to be sequenced 

together in existing words of a language. In these examples, short-term 

memory for serial order is seen to depend on background knowledge 

concerning domain-specific regularities in sequential structure. Note that in 

this and similar cases, recall for highly probable sequences is better than 

for less probable ones. Hence, the relevant background knowledge involves 

transition probabilities among specific items. It is this that makes the 

observed effects difficult for context-based models to address.

4. ISSUES IN PARALLEL LEXICAL PROCESSING

Long-term storage of words depends critically on phonological short-

term memory processes. A number of further constraints on modelling 

lexical storage follow from this premise. Arguably, the most fundamental 

such constraint is that lexical representation, organization and access must 
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be based on “parallel processing systems” that realistically mirror brain 

functional processes. This opens up new, challenging perspectives on basic 

issues underlying lexical architectures and their role and position in the 

language edifice. 

The vast literature on STM and LTM processes has had the 

unquestionable merit of throwing in sharp relief some fundamental issues 

concerning the representation and manipulation of time-bound constraints 

over symbolic sequences. Word forms are primarily strings of sounds or 

characters and so the question of their representation and acquisition in 

time is logically prior to any other processing issue. Perhaps with the only 

notable exception of connectionist models, however, coding issues have 

suffered unjustified neglect by the Artificial Intelligence research community 

over the last 30 years. On the other hand, the mainstream connectionist 

answer to the problem of time series coding in parallel processing systems, 

namely “conjunctive coding”, seems to have eluded some core issues. 

As a first approximation, conjunctive coding (e.g., Coltheart et al., 

2001; Harm & Seidenberg, 1999; McClelland & Rumelhart, 1981; Perry, 

Ziegler & Zorzi, 2007; Plaut et al., 1996) represents the word form CAT by 

activating one representational unit that stands for C in conjunction with the 

first position, another for A in the second position, and another for T in the 

third position. This representation has proven useful for model building and 

theory testing in the domain of parallel lexical processing and learning, but 

it looks more like a convenient way out than a principled solution. 

First, conjunctive codes are typically assumed to be available in the 

input (or encoding) layer in the form of a built-in repertoire of context-

sensitive Wickelphones, the issue of their origin/acquisition being just 

swept under the carpet. Now, language learning is much more than making 

inferences about fully-developed sign-based lexical representations of some 

kind. Input representations can be noisy, crucially underspecified and may 

develop through time. Any model of language learning that presupposes 

stable full-fledged sign-based representations from the outset leaves much 

to be explained. A second related issue is the acquisition of phonotactic 

knowledge. Speakers are known to exhibit differential sensitivity to diverse 

sound patterns. Effects of graded specialization in the discrimination of 

sound clusters and lexical well-formedness judgements are the typical 

outcome of acquiring (the phonotactics of) a particular language. If such 

patterns do not develop through learning but are part and parcel of the 

encoding layer, the same processing system cannot be used to deal with 

different languages exhibiting differential sound constraints.

A third limitation of conjunctive coding is that phonemes and letters 

are bound with their context. This means that two elements like ‘#E’ and 

‘VE’ representing two instances of the same letter ‘E’ in ‘#EVERY#’ are 
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in fact as similar (or as different) as any two other elements. We are just 

left with “token” representations, the notion of “type” of unit remaining 

out of the representational reach of the system. This makes it difficult to 

generalize knowledge about phonemes or letters across positions (the 

so-called “dispersion problem”: Plaut et al., 1996; Whitney, 2001). 

It is also difficult to align positions across word forms of differing 

lengths (i.e., the “alignment problem”: see Davis & Bowers, 2004), thus 

hindering recognition of both shared and different sequences between 

morphologically-related forms. The failure to provide a principled solution 

to alignment problems (Daugherty & Seidenberg, 1992; Plaut et al., 1996; 

Seidenberg & McClelland, 1989) is particularly critical from the perspective 

of morphology learning. Languages wildly differ in the way morphological 

information is sequentially encoded, ranging from suffixation to prefixation, 

sinaffixation, apophony, reduplication, interdigitation and combinations 

thereof. For example, the alignment of lexical roots in three as diverse pairs 

of paradigmatically related forms such as English WALK-WALKed, Arabic 

KaTaBa-yaKTuBu, German SPReCHen-geSPRoCHen requires substantially 

different processing strategies. Precoding any such strategy into lexical 

representations (e.g. through a fixed templatic structure that separates the 

lexical root from other morphological markers) would have the neat effect 

of slipping in morphological structure directly into the input, thereby 

making input representations dependent on languages. A far more plausible 

solution would be to let the processing system home in on the right sort 

of alignment strategy through repeated exposure to a range of language-

specific families of morphologically-related words. But this is exactly what 

conjunctive coding cannot do.

To our knowledge, there have been three attempts to tackle the issue 

within a connectionist framework: “Recursive Auto-Associative Memories” 

(RAAM; Pollack, 1990), “Simple Recurrent Networks” (SRN; Botvinick 

& Plaut, 2006) and “Sequence Encoders” (Sibley et al., 2008). The three 

models set themselves different goals: i) encoding an explicitly assigned 

hierarchical structure for RAAM, ii) simulation of a range of behavioural 

facts of human Immediate Serial Recall for Botvinick & Plaut’s SRNs and 

iii) long-term lexical entrenchment for the Sequence Encoder of Sigley et

al. In spite of their considerable differences in mechanisms and properties 

of learning, all systems share the important feature of modelling storage of 

symbolic sequences as the by-product of an “auto-encoding” task, whereby 

an input sequence of arbitrary length is eventually reproduced on the output 

layer after being internally encoded through recursive distributed patterns of 

node activation on the hidden layer(s). Serial representations and memory 

processes are thus modelled as being contingent on the task. In particular, 

Botvinick & Plaut’s paper makes the somewhat paradoxical suggestion 
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that human performance on immediate serial recall develops through direct 

practice on the task of word repetition. Moreover, STM effects appear to 

be accounted for in terms of a long-term dynamics dictated by the process 

of weight adjustment through learning. Although LTM effects are known 

to increase short-term storage capacities, the developmental evidence shows 

that the causal relationship is in fact reversed, with children with higher 

order STM being able to hold on to new words for longer, thus increasing 

the likelihood of long-term lexical learning (Baddeley, 2007).

In the remainder of this paper we describe a novel computational 

architecture for lexical processing and storage. The architecture is based on 

Kohonen’s Self-Organizing Maps (SOMs; Kohonen, 2001) augmented with 

first-order associative connections that encode probabilistic expectations 

(so called, Temporal Hebbian SOMs, or THSOMs for short; Koutnik, 

2007; Pirrelli et al., 2010; Ferro et al., 2010). We shall show that THSOMs 

define an interesting class of general-purpose memory models for serial 

order, exhibiting a non-trivial interplay between STM and LTM processes. 

At the same time, they simulate incremental processes of topological self-

organization whereby lexical sequences are arranged in minimally entropic 

stochastic hierarchies. We shall also discuss properties of such hierarchies 

that make them interesting morphological structures. 

5. TEMPORAL SOMS FOR LEXICAL PROCESSING

THSOMs are storage devices consisting of grids of memory nodes with a 

short-term and a long-term dynamic. The “short-term dynamic” is based 

on parallel activation of topologically-organized memory nodes exhibiting 

dedicated sensitivity to stimuli that occur in specific spatio-temporal contexts. 

The “long-term dynamic” unfolds through training: i) nodes are made more 

sensitive to particular classes of stimuli; ii) inter-node Hebbian connections 

are attuned to transition probabilities between temporally adjacent stimuli as 

they are observed in the training data. 

Being generic memory models for serial order, THSOMs are not 

designed to perform any particular task. Nonetheless, for our present 

concerns, they exhibit a processing behaviour that makes them similar to 

stochastic Markov models whose states are topologically clustered nodes 

and state transitions are normalized inter-node Hebbian connections. In 

what follows, we first provide a sketchy account of the basic dynamics of 

THSOMs learning sequences of symbols (e.g. digits, letters, syllables) to 

then move on to a series of small-scale simulations that are intended to give 

the reader an intuitive flavour of their behaviour. 
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5.1 THSOMs in action

Figure 1 illustrates the architecture of a THSOM consisting of N memory 

nodes (or “map nodes”) arranged for simplicity along one dimension. Input 

to the THSOM is represented by a D-dimensional “vector” X of input codes 

on the map’s “input layer”.

All nodes in a THSOM are linked to the input vector through weighted 

connections defined over the “spatial connection layer”. When a stimulus is 

presented to the map, encoded on the input layer, all nodes are activated in 

parallel. Node activation is short-term, lasting one time step, until another 

input stimulus is presented. The degree of activation of a map node is a 

function of the “correlation” between values of the input vector and weights 

on the spatial connections to the node. The higher the correlation, the 

stronger the node activation. When correlation is high, the node is said to 

have a faithful “memory trace” of the input vector. 

Memory traces develop through training. Training takes place iteratively, 

upon repeated presentation of input stimuli, and consists in adjusting 

weights on the spatial connection layer for them to get closer to the current 

values on the input layer. Weight adjustment does not apply evenly across 

map nodes and time steps, but depends on: a) node’s correlation to the 

input vector, b) map’s learning rate and c) space topology. At each input 

presentation, the most strongly adjusted node is the most highly activated 

one, called “Best Matching Unit” (BMU). All other nodes are adjusted 

as a (Gaussian) function of i) their distance from BMU on the map (the 

“neighbourhood radius”), and ii) the map’s current “learning rate”. Weights 

of nodes that lie close to BMU are made more similar to input values than 

weights of nodes lying further away from BMU. After adjustment, the time 

counter is increased by one tick, the map’s activation is reset and another 

input stimulus is encoded. Both learning rate and neighbourhood radius 

go down through time to simulate the behaviour of a brain map losing its 

plasticity (Kohonen, 2001).

Unlike classical SOMs, THSOMs can also learn synchronization of two 

nodes that fire at consecutive time steps. A THSOM can remember, at time 

t, its state of activation at time t-1 and can make an association between the 

two states. This is done on the layer of pre- and post-synaptic connections 

linking each single node to all other nodes on the map, called the “temporal 

connection layer” (see Figure 1). Synaptic weights are adjusted by Hebbian 

learning (Hebb, 1949): the temporal connection between two consecutively 

firing BMUs is potentiated, and the temporal connections between all other 

nodes and the current BMU are depressed. 
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!

FIGURE 1. OUTLINE ARCHITECTURE OF A THSOM

In THSOMs, temporal connections affect short-term node activation. 

Activation of a map node at time t is an inverse function of the summation 

of two vector distances: a) the distance between the input vector and the 

node’s spatial connection weights, and b) the distance between the node’s 

pre-synaptic temporal weights and the whole state of activation of the map 

at time t-1. As a result, a THSOM trained on time series of input vectors 

develops i) a topological organization of nodes by their sensitivity to 

similar input vectors (or spatial similarity) and ii) a first-order time-bound 

correlation between BMUs activated at two consecutive time steps. Because 

of this second activation component, the same symbol can fire two different 

BMUs depending on its left context. This is due to the fact that, on the 

temporal layer, the two BMUs correlate with different predecessors, thereby 

receiving different degrees of pre-synaptic support.

Differing strategies of weight adjustment on the temporal layer can 

lead to considerably differing topological structures. We shall consider 

here two alternative regimes. Panels a) and b) of Figure 2 illustrate a 

“localist” temporal learning strategy originally proposed by Koutnik (2007). 

Potentiating (LTP) connections between consecutively activated BMUs 

(at times t-1 and t) involve two units only (Figure 2a). Depressant (LTD) 

connections involve all nodes other than the BMU at time t-1 on the one 

hand, and the single BMU at time t on the other hand (Figure 2b). 

Pirrelli et al. (2010) propose the “distributed” activation strategy 
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illustrated in panels c) and d) of Figure 2. Both potentiation (LTP) and 

depressant (LTD) connections affect a neighbouring area centred around the 

BMU at time t. By spreading the temporal support over the neighbourhood 

of the current BMU (as a Gaussian function of the distance from BMU), 

the map appears to be more prone to develop dedicated nodes for context-

specific occurrences of the same letter. The ensuing simulation is intended 

to elaborate this point.

! ! ! !

a) b) c) d)

FIGURE 2. “LOCALIST” AND “DISTRIBUTED” WEIGHT ADJUSTMENT STRATEGIES

5.2 Simulation 1: hierarchical memory structures

Figure 3 shows chains of short-term activation peaks in a 7x7 bi-dimensional 

THSOM after presentation of the strings ‘#ABC’, ‘#ACB’, ‘#BCA’, ‘#BAC’, 

‘#CAB’, ‘#CBA’. Strings are shown to the map one letter at a time. The 

start-sequence symbol ‘#’ is appended at the beginning of each sequence to 

tell the map that a new string is being shown. In the figure, each node is 

labelled with a letter to indicate that the node is most sensitive (above a set 

threshold) to that particular letter. At each input exposure, the Best Matching 

Unit (BMU, highlighted in bold in the figure) represents the map’s highest 

response to the currently input letter. Solid arrows represent temporal 

connections linking two consecutively activated BMUs. 

Note that several BMUs in the map are activated by the same letter: five 

BMUs for ‘A’, five for ‘B’ and five for ‘C’. Each such node turns out to be 

specialized for a specific occurrence of the letter in a “unique left context”. 

There is a single BMU for ‘A’ in initial position (in ‘#ABC’ and ‘#ACB’), 

one for ‘A’ preceded by ‘#B’ (in ‘#BAC’), one for ‘A’ preceded by ‘#C’ (in 

‘#CAB’), one for ‘A’ preceded by ‘#BC’ (in ‘#BCA’) and another one for 

‘A’ preceded by ‘#CB’ (in ‘#CBA’). 
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!

FIGURE 3. TEMPORAL ACTIVATION PATHS IN A THSOM

Context-sensitivity is something that THSOMs develop through 

training. The THSOM in Figure 3 was trained, over 100 sessions, on all 

possible permutations of ‘A’, ‘B’ and ‘C’. We used the “distributed” 

weight adjustment strategy proposed by Pirrelli and colleagues (2010; see 

section 5.1 for details). After training, the THSOM has ostensibly stored all 

permutations as a tree-like hierarchical structure of nodes, starting with a 

‘#’ node at the root of the tree and branching out as soon as two (or more) 

different nodes can be alternative continuations of the same history of past 

activated nodes, as illustrated in Figure 4. The length of the history of past 

activations defines the “order of memory” of the map. It can be shown that 

this type of hierarchical organization maximizes the map’s expectation of an 

upcoming symbol in the input string or, equivalently, minimizes the entropy 

over the set of transition probabilities from one BMU to the next. This is 

achieved through a profligate use of memory resources, whereby several 

nodes are recruited to be most sensitive to contextually specific occurrences 

of the “same letter”.

input strings temporal paths

!

FIGURE 4. A TREE-LIKE LEXICAL STRUCTURE
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A tree-like lexicon is not the only storage structure that a THSOM can 

possibly develop after training. Figure 5 shows a different organization of 

a THSOM trained on Koutnik’s localist learning regime (section 5.1). In 

the figure, we note a more parsimonious use of nodes, with a maximum of 

4 BMUs per letter. This means that a single node can ‘recognize’ several 

occurrences of the same letter in different contexts. 

!

FIGURE 5. A DIFFERENT STORAGE STRUCTURE IN A THSOM

Figures 3 and 5 illustrate an exemplar case of dynamic trade-off between 

time and space. If the map has to devote unique BMU chains to sequences 

of letters, it has to recruit more nodes per symbol. Fewer specialized nodes 

mean shorter long-term memory spans. To be more concrete, let us take 

a closer look at Figure 3. Each of the two ‘C’ nodes at the bottom right 

corner of the map is preceded by a different ‘B’ node: a ‘B’ node preceded 

by ‘A’ and a ‘B’ node preceded by ‘#’. This means that the map’s context-

sensitivity spans over more than one letter to the left, thereby simulating a 

memory order greater than 1. In Koutnik’s learning regime this takes place 

only to a limited extent. A localist temporal support creates isolated peaks 

of node activation (see Figure 2a). Local peaks eventually act as strong 

attractors for all surrounding nodes, making it very hard for higher-order 

memory nodes to emerge. Accordingly, a single ‘C’ node at the bottom left 

corner of Figure 5 has two pre-synaptic connections with two different ‘A’ 

nodes, one preceded by a ‘B’ node and the other preceded by a ‘#’ node. 

Thus, the map behaves like a first order Markov chain.
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5.3 Simulation 2: string prediction

In order to assess the impact of storage organization on the ability of a 

THSOM to predict upcoming letters, we tested the two training regimes 

on a “string recognition task” (Ferro et al., 2010). The task consists in the 

map’s going through familiar strings of written letters. Letters are shown one 

at a time from left to right. The map tries to anticipate upcoming (masked) 

letters on the basis of already unmasked ones. The task has several possible 

connections with the proactive reading strategies used by a skilful reader in 

scanning a written text (Ferro et al., 2010).

A 30x30 THSOM was trained on 66 Italian present indicative forms 

whose frequency distributions were sampled from the Calambrone section of 

the Italian CHILDES sub-corpus (MacWhinney, 2000). Two training sessions 

were carried out, one on a distributed learning regime, the other on its localist 

variant. Figure 6 reports the results of both tests in terms of overall per word 

accuracy of prediction and number of predicted chunks by chunk’s length. 

The upper panel shows that the map’s performance after distributed training 

develops considerably more and longer chunks than the same map after 

localist training. This impacts overall prediction accuracy on trained words, 

which scores 48.5% in the first test (distributed learning), and 37.9 in the 

second test (localist learning).

!

FIGURE 6. PREDICTION ACCURACY AND CHUNK LENGTH FOR DISTRIBUTED AND LOCALIST LEARNING
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5.4 Simulation 3: string alignment

Figure 7 shows the temporal activation paths fired by the six present 

indicative forms of the Italian verb CREDERE ‘believe’ after training. Note 

that all paths share the sequence ‘#mCmRmEmD’ corresponding to the

morphological root of the verb. Different paths start branching out upon the 

transition from the root to its inflectional endings, eventually giving rise to 

six distinct (partially overlapping) node sequences: ‘Om#’, ‘Im#’, ‘Em#’,

‘ImAmMmOm#’, ‘EmTmEm#’, ‘OmNmOm#’. Activation paths thus

correspond to morphological constituents. The overall resulting structure of 

the map is morphologically interesting in several respects.

!

FIGURE 7. TEMPORAL ACTIVATION PATHS OF CREDERE PRES IND FORMS

First, let us look at the way paradigmatically homologous forms 

such as vediamo ‘we see’ and crediamo ‘we believe’ are represented as 

activation chains on the map (Figure 8). The two BMU chains are fairly 

clearly separated on the roots cred- and ved-, but tend to converge as soon 

as more letters are shared by the two input forms. Eventually the substring 

-iamo leaves two BMU chains that run in parallel through the map at a very 

short topological distance. We take this to mean that the two substrings are 

recognized by the map as two instances of the same type of inflectional 

ending. Note that the shared substring iamo takes different positions in the 
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two forms, starting from the forth letter in vediamo and from the fifth letter in 

crediamo. In traditional positional coding, this raises an alignment problem. 

In our map, the substring in question receives different but converging 

representations, as order information is relative rather than absolute. 

!

FIGURE 8. TEMPORAL ACTIVATION PATHS FOR CREDIAMO AND VEDIAMO

Analytically, convergence can be expressed in terms of topological 

distance between BMUs on the map. Figure 9 gives the per-node topological 

distance (weighted by spatial distance) of the BMU chains of vediamo and 

chiediamo. As the chains unfold, per-node distance progressively narrows 

down. In morphological terms, topological convergence expresses shared 

morphological structure. Note furthermore that structure is inherently 

“graded” at morpheme boundaries, with an early start corresponding to the 

shared substrings -ed in the roots ved- and cred-.

More difficult cases of alignment arise in the context of Semitic 

morphologies, where the relative position of the letters shared by 

morphologically-related forms can vary dramatically, as in KaTaBa vs. 

yaKTuBu, respectively the perfective and imperfective forms of the verbal 

triliteral root KTB ‘write’. 

An interesting question is to what extent the activation paths 

corresponding to Arabic perfective and imperfective forms are successful 

in representing the morphological notions of triconsonantal root and 

interdigitated vowel pattern. The problem is far from trivial, as discontinuous 

morphological patterns are known to be beyond the reach of chaining models 
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for serial order. Given two perfective forms like kataba and hadama, for 

example, vowels in the two strings are all preceded by different left contexts.

We trained a 25x25 map on 12 perfective and imperfective transliterated 

Arabic forms. The two BMU chains for the forms kataba and hadama are 

given in Figure 10. 

!

FIGURE 9. TOPOLOGICAL DISTANCE MATRIX FOR CREDIAMO AND VEDIAMO

!

FIGURE 10. TEMPORAL ACTIVATION PATHS FOR KATABA AND HADAMA
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Note that, in spite of their being preceded by different left contexts, 

pairs of a taking the same position in the two strings (e.g. a in second 

position from the left) appear to trigger topologically closer nodes on the 

map. The matrix of per node topological distances throws this trend in sharp 

relief (Figure 11). Note that a’s which are not time-aligned trigger nodes 

that are located at a considerably longer distance on the map. We shall 

return to a detailed analysis of this behaviour in the general discussion.

!

FIGURE 11. TOPOLOGICAL DISTANCE MATRIX FOR KATABA AND HADAMA

5.5 Simulation 4: STM and LTM dynamics in THSOMs

We tested a THSOM on a task of Immediate Serial Recall (ISR) of learned 

strings. The THSOM trained for Simulation 2 above is shown one form at 

a time, randomly extracted from the same training corpus (66 Italian verb 

forms) and is immediately asked to recall it. The test is repeated over again, 

by showing the map more forms, each followed by immediate recall. The 

simulation is intended to model a few aspects of STM and LTM interaction. 

In a THSOM, LTM processes have two functions: i) node specialization to 

context-sensitive recognition of specific symbols, ii) consolidation of Hebbian 

temporal connections between consecutively activated nodes. The STM 

dynamic, on the other hand, consists in distributed transient activation of map 

nodes prompted by i) their spatial connections to input vector representations 

and ii) their temporal connections to other map nodes.
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In the SOM literature, node activation is typically assumed to be 

sustained over one time step, until the next input stimulus is shown to 

the map. In fact, we have evidence that human subjects exposed to an 

arbitrary string in a classical ISR task can sustain, for a few seconds, the 

simultaneous activation of more symbols in the string. We thus modelled 

concurrent sustained activation by integrating the ST activation patterns 

iteratively triggered by each symbol in an input string. Upon recall, the 

THSOM must be able to reproduce the original input string on the basis 

of the (ST) integrated activation state. This is far from trivial, as pattern 

integration apparently has no direct order information. Figure 12 shows 

the map’s per word recall accuracy at different learning epochs (50, 70 

and 100), as a function of an increasingly filtered ST integrated activation. 

Filtering an integrated activation pattern means focusing on just shown 

symbols by getting rid of concurrent spurious node activations. The 

experiment gives a measure of the robustness of integrated activation in 

conveying information about order and items in the string to recall and of 

the importance of LT learning for ST recall. 

!

FIGURE 12. ISR ACCURACY BY INCREASINGLY THRESHOLDED ACTIVATION AT DIFFERENT LEARNING 

EPOCHS



224

MARCELLO FERRO, GIOVANNI PEZZULO AND VITO PIRRELLI

6. GENERAL DISCUSSION

THSOMs define an interesting class of general-purpose dynamic memories 

for serial order. They learn to encode and decode variable-length sequences 

using minimally-entropic hierarchical structures. The structures can easily 

be inspected by observing temporal activation peaks (BMUs’ temporal 

chains) in a map being exposed to a particular sequence of stimuli. In fact, 

more than just storage is involved here. In what follows, we discuss a few 

representation and processing aspects of THSOM memory mechanisms.

6.1 Conjunctive coding

A trained THSOM behaves like a variable-order stochastic Markov chain, 

with inter-node connections building expectations about possible upcoming 

strings. In a THSOM, individual symbol types are represented as distributed 

patterns of topologically organized nodes. The distance between any 

two nodes in the map space is an inverse function of two values: i) the 

correlation between their input connections, ii) the correlation of their pre-

synaptic connections (their average left-context). In this respect, distributed 

activation patterns represent conjunctive codes for symbols (Simulation 1). 

Yet, we observe that distributed representations of this kind are not purely 

token-based, as all nodes dedicated to the same symbol embody an invariant 

representation of that symbol (the vector of spatial connection weights), with 

context-sensitivity being encoded through patterns of Hebbian connections. 

This allows for important type-based generalizations to be made, as 

illustrated by Simulation 3 above on word alignment (see also section 6.4 

below). 

6.2 Chunking

The way sequences are dynamically stored in a THSOM has an influence 

on its processing behaviour. THSOMs can learn to “chunk” frequently 

attested strings by processing them through “dedicated (unique) temporal 

chains” of BMUs (Simulation 1). As we saw, this is the result of a long-

term memory process, based on incremental weight adjustment over Hebbian 

connections. The process has a significant impact on the map’s on-line short-

term dynamics. By maximizing the number of dedicated chains, a THSOM 

maximizes its “predictive ability”, since non-intersecting BMU chains are 

memory structures that can be traversed with certainty after activation of the 

first node in the chunk (Simulation 2). This increases fluency and speed in 

on-line processing (e.g. in reading performance, as shown by Ferro et al., 
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2010). Finally, it may also increase the capacity of the STM span, since 

more biased expectations make order relationships easier to retrieve from 

integrated short-term activation patterns (Simulation 4). 

Chunking depends on how good the map is in keeping memory of past 

events (the so-called memory order of the map). Since words are made 

up by recurrent, limited combinations of letters, they tend to activate the 

same sequences of nodes over again, thus causing BMU chains to merge. 

In Simulation 1, for example, ‘ABC’ and ‘BCA’ share the substring ‘BC’. 

For the map to be able to devote distinct BMU chains to the two strings, 

it has to keep track of the different (left) contexts where ‘BC’ occurs. 

Chunking is thus a function of the memory order of the map. Recall that 

distributed temporal learning (Pirrelli et al., 2010) is based on first-order 

Hebbian connections only. Despite this limitation, chunking extends 

over longer stretches of symbols due to cascaded propagation of context-

sensitive activation, thereby simulating orders of memory greater than 

one (Simulation 1). This is achieved through a profligate use of memory 

resources allowing for storage of “context-sensitive redundant information”, 

in sharp contrast with classical lexical architectures where storage 

parsimony is at a premium. 

6.3 Serial recall: from time to space

Another important aspect of the way THSOMs store information is that 

they can transcode “time into space”. Time-bound order information defines 

precedence relations between symbols in a sequence and plays an important 

role in node activation. Recall that two nodes that are sensitive to the same 

symbol tend to stay close in the map space. Moreover, they tend to specialize 

for differing occurrences of that symbol in context, depending on their 

Hebbian connections to past BMUs. An important implication of this point 

is that it becomes possible to “decode” order information from patterns of 

short-term node activation only. In Simulation 4 we put this behaviour to a 

challenging empirical test, by modelling Immediate Serial Recall as the task 

of retrieving item and order information from the integrated pattern of short-

term activation prompted by a recently presented string of letters. Although 

the evidence reported here is admittedly anecdotal, the simulation is a 

promising attempt at modelling LTM influence on STM processes. A striking 

feature of the model is that long-term chunking makes room for more 

reliable predictions, thus making it easier for the map to elicit unambiguous 

item and order information from integrated short-term activation patterns. 

Unlike all other models we are aware of, the result is based on the non-trivial 

interaction between two very different mechanisms for STM and LTM: 

respectively, transient node activation and trained Hebbian connections.
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6.4 Word alignment

Map nodes encode both spatial information, about a symbol type, and 

temporal information, about the symbol’s context of use. Spatial information 

makes it possible for a node to ignite every time its mostly correlated 

symbol is shown, irrespective of its position. Temporal information encodes 

information about the relative position of a symbol in the input string. If both 

space and time concur in the topological organization of a THSOM, as is 

the case of the training regime adopted for our simulations here, conflicting 

requirements engage in a competition for primacy. The resulting long-term 

specialization of symbol-specific nodes for order-sensitive information has 

interesting repercussions on issues of “word alignment” (Simulation 3). 

Two input strings like ‘#CREDIAMO’ and ‘#CREDO’ (Figure 7) 

share the same chain of activated units up to ‘D’. This is a consequence 

of the fact that two letters are indistinguishable for the map if they occur 

in identical left contexts. Thus, in this case letter alignment corresponds 

to BMU sharing. What happens when left contexts are different? In 

‘#VEDIAMO’ and ‘CREDIAMO’ (Figure 8) the letters ‘E’ and ‘D’ are 

recognized by two different nodes lying close to each other on the map. 

Although the two resulting BMU chains develop independently, they 

nonetheless run in parallel, showing a tendency to converge. Admittedly, 

this is a weaker criterion for alignment than BMU chain sharing, but is 

more widely applicable across morphological families. Arabic discontinuous 

roots, to give but one example, do not possibly share the same chain of 

BMUs. ‘K’ in yaKtubu normally triggers a distinct node than ‘K’ in 

Kataba would do, as the two ‘K’ are embedded in different local contexts, 

prompting different expectations on possibly ensuing letters. Nonetheless, 

since they are instances of the same type, they will activate two relatively 

close nodes on the map. 

A more difficult case of word alignment arises in connection with two 

perfective forms like kataba and hadama, where the same letter a occurs 

in three different contexts. How is it possible for the map to discriminate 

them? How can the map possibly align them according to their position in 

the two strings if they are preceded by different letters? In fact, this seems 

to be a necessary step to take if we want the map to get a notion of the 

Arabic perfective vowel pattern. To understand how this is possible, observe 

that temporal information is not limited to information about the actually 

occurring left context. The BMU activated by the symbol ‘A’ in the input 

string ‘#HA’ at time t receives support, through temporal connections, from 

all nodes activated at time t-1. The nodes include, among others, the ‘K’ 

node, which competes with the ‘H’ node at time t-1 as it receives temporal 

support from the ‘#’ node activated at time t-2 (due to the existence of 
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‘#KA’ in kataba). By reverberating simultaneous activation of competing 

nodes to an ensuing state, the map can place ‘A’ nodes triggered by ‘#KA’ 

and ‘#HA’ in the same area, as they share a comparatively large portion 

of pre-synaptic support. In general, the mechanism allows the map to keep 

together nodes activated by letters in the same position in the string, as 

shown in Figure 13 below.

!
FIGURE 13. CLUSTERS OF A INDEXED BY POSITION IN ARABIC VOWEL PATTERNS

6.5 Lexical hierarchies and morphological structure

THSOMs are strongly biased towards developing lexical hierarchies (see 

Simulation 1) that are strongly reminiscent of morphological paradigms 

(Pirrelli et al., 2010). For example, Simulation 3 shows that all present 

indicative forms of the verb CREDERE activate a unique chain of BMUs 

corresponding to the verb’s lexical root (cred-). Upon hitting the final 

letter of the root, independent activation chains start branching out through 

post-synaptic transitions. As more alternative chains are competing with 

one another, transition probabilities reflect the relative frequency of 

paradigmatically-related verb forms. 

Figure 14 illustrates the overall effect of such competition in the 

CREDERE present indicative paradigm. The vertical axis in the two 

panels shows where all BMUs lie on the map in terms of x coordinates 
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(upper panel) and y coordinates (lower panel). The horizontal axis in both 

panels give the absolute position of each letter in the string. Solid lines 

represent inter-BMUs transitions, with line thickness proportional to their 

conditional probability. The resulting trend in entropy marks the presence 

of morphological structure: sub-lexical constituents (roots and endings) 

show a path of considerably thicker transitions than constituent boundaries. 

Not surprisingly, morphologically complex forms give rise to branching out 

structures, but their individual constituents exhibit lower entropy levels.

!
FIGURE 14. TRANSITION PROBABILITIES IN CREDERE PRES IND PARADIGM

Note that hierarchical structures of the kind depicted in Figure 14 

enforce “concurrent storage” of paradigmatically-related forms, thus 

modelling “frequency-based competition” between base and derived forms, 

rather than deriving the latter from the former through on-line processing. 

They are thus readily amenable to being used as computer models of well-

known paradigm-based effects in lexical decision tasks such as “family 

size” and “family frequency” effects (Moscoso del Prado Martín et al., 

2004). Secondly, they appear to have the potential for replicating effects 

of automatic decompositional processing in mono-morphemic words like 

brother, due to partial overlapping with the morphologically-unrelated 

entry broth. Finally, the development of minimally-entropic strings of 

symbols is known to be an important determinant of linguistic structure, 
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thus suggesting the importance of predictive behaviour in language 

processing and the primacy of frequency and sequentiality over hierarchical 

constituency in line with evidence offered by Bybee (2002), Reh (1986), 

Christiansen & Chater (1999) and Santelmann & Jusczyk (1998).

7. CONCLUDING REMARKS

This paper presents a computational class of lexical memories based on 

Kohonen’s Self-Organizing Maps, augmented with a temporal layer of 

synaptic connections encoding order information. This class of models, 

dubbed THSOMs (Koutnik, 2007; Pirrelli et al., 2010; Ferro et al., 2010), 

addresses a number of interesting desiderata for lexical memories, including 

non trivial aspects of dynamic interaction between STM and LTM processes. 

THSOMs can be trained on both symbol codes and their order in the 

input string by incrementally storing this knowledge respectively through 

topologically organized map nodes on the one hand and Hebbian inter-node 

synaptic connections on the other hand. Nodes that are sensitive to the same 

input symbol tend to get specialized for particular instances of the symbol 

in context. This is reminiscent of conjunctive coding in both classical and 

recurrent connectionist architectures. Unlike connectionist conjunctive 

representations, however, where both order and item information is 

collapsed on the same layer of connectivity, THSOMs keep the two sources 

of information stored on separate layers: the temporal layer and the spatial 

layer respectively. The aspect has interesting repercussions on issues of 

order-independent generalizations over symbol types and goes a long way 

to addressing both dispersion and alignment problems in word matching.

THSOMs are primarily “memory devices” and can simulate 

morphologically-related phenomena of lexical organization in an interesting 

way. It is important to appreciate in this connection that the stored content 

of a THSOM can be monitored “independently” of any input representation 

or running task. In principle, it is possible to inspect the hierarchical 

structure of memorized words by navigating the network of nodes and 

their associative connections. THSOMs are trained to memorize strings 

incrementally, one letter at a time. Likewise, internal memory structures 

can be accessed and retrieved incrementally, by scanning the input string 

letter by letter, from left to right. When a progressively longer portion of 

a word is let through, multiple BMU paths may be activated concurrently, 

representing “expectations” that are consistent with what is shown to the 

map. Surely, multiple alternatives get narrowed down as soon as more of 

the input string is shown to the map, in keeping with “cohort models” of 

lexical access (Marslen Wilson, 1990). 
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The recent use of classical multilayered perceptrons and recurrent 

variants thereof as models of lexical memory (Botvinik & Plaut, 2006; 

Sibley et al., 2008) falls short of offering a comparable battery of processing 

mechanisms and organizational principles. First, they are arbitrary input-

output pattern associators, their hidden patterns of synaptic associations 

being elicited only upon presentation of an input trigger. Hence, it makes 

comparatively little sense to probe the internal state of a multi-layered 

perceptron incrementally, by showing a progressively larger portion of an 

input string. Furthermore, the network’s behaviour is crucially determined 

by the whole pattern of concurrent input activation and it cannot build up 

expectations about possible continuations of the incoming input string. In 

fact, Sibley and colleagues simulate lexical storage by training a recurrent 

network on a task of Immediate Serial Recall (ISR). What the network 

appears to memorize is a set of activation patterns arbitrarily mapping 

input representations onto output representations. When input and output 

representations happen to be identical, as in an auto-encoding task, the nature 

of stored information does not change. The model is learning to practise ISR, 

rather than using the task to probe an independent memory content. 

We may eventually wonder what role morphological structure plays in 

THSOMs. As we saw, THSOMs tend to use redundant, “context-sensitive 

information” to maximize the number of dedicated BMU chains. This not 

only maximizes the ability of a map to predict upcoming letters in the 

input string, but also increases the order of its STM span by reducing the 

number of alternative paths that are concurrently sustained. The effect is 

achieved in THSOMs with a simple “predictive drive”. The network tends 

to maximize prediction accuracy. This entails maximizing discriminability 

in the input space, which in turn determines the formation of the maximum 

possible number of BMU chains (the THSOMs “chunking” mechanism), 

which at the same time lowers the demands of STM and the necessity to 

sustain several competing memory traces. In other words, in THSOMs there 

is a continuous interplay of memory, encoding and processing mechanisms, 

under the pressure of prediction accuracy.

This view prompts an interesting reappraisal of the role of 

morphological structure in lexical organization and processing. In 

THSOMs, morphological formatives (whether affixal or templatic) emerge 

as graded temporal chains of BMU activation. Only in some cases, shared 

morphological structures are directly mirrored by shared BMU chains, 

as in the case of root-sharing inflected forms of the same verb (credo 

and crediamo). In other cases, BMU chains which are fired by the same 

formatives are not identical. Rather, they unfold independently, running in 

parallel through the same map areas, as in the case of vediamo vs. crediamo 

(Figure 8). “Bundles of parallel chains” of this kind represent the closest 
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possible correlate to the notion of morphological formative in a THSOM. 

Crucially, the correlate is not the result of a process of redundancy-free data 

compression, but rather the outcome of topological organization based on 

both spatial and temporal information. 

Parallel chains are considerably more general morphological 

structures than shared chains, as they apply to discontinuous formatives 

(e.g. Arabic triconsonantal roots). Bundles of parallel chains thus define 

deeply entrenched, probabilistically-supported transitions which the map 

repeatedly fall into during word processing. Their role is to constrain the 

map’s response by preventing activation chains from getting astray in the 

presence of noisy, rare or novel input words. For example, a THSOM that 

misidentifies a single input character does not catastrophically mistake all 

ensuing characters (as predicted by associative chaining). Rather it tends 

to recover from an early mistake by relying on internalized expectations 

based on the amount of word structure in the training data. In this sense, 

predictive expectations and probabilistically supported generalizations are 

only two sides of the same coin: optimal memory organization for efficient 

word recognition and production. 
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