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WORD ALIGNMENT
AND PARADIGM INDUCTION

CLAUDIA MARZI MARCELLO FERRO VITO PIRRELLI

ABSTRACT: The variety of morphological processes attested in 

and combinations thereof pose severe problems to unsupervised 
algorithms of morphology induction. The paper analyses morphological 

strategies for word recoding. Our model endorses the hypothesis that 
lexical forms are memorised as full units. At the same time, lexical 
units are paradigmatically organised. We show that the overall amount 
of redundant morphological structure emerging from paradigm-based 
self-organisation has a clear impact on generalisation. This supports the 
view that issues of word representation and issues of word processing are 

.

KEYWORDS: morphological generalisation, morphological paradigms, self-
organising memory, word coding, word processing.

1. INTRODUCTION

In developing computational models of word processing, three fundamental 
issues must be addressed: i) the nature of input representations, ii) the nature 
of output representations, iii) the formal relationship holding between i) 

morphological task is modelled.

& McClelland, 1986), input representations are encoded as patterns of 
activated nodes on the INPUT LAYER, representing the base form of a verb, 
possibly augmented with an indication of the morpho-syntactic features 

patterns of nodes activated on a distinct level of connectivity, the OUTPUT 

LAYER

the two levels is a mapping function projecting an input pattern onto the 
corresponding output pattern through a third level of connectivity known 
as HIDDEN LAYER. Inter-layer mapping can be highly non-linear for pairs 
of suppletive verb forms such as go-went, but the same mechanism is 
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held to be in place for any input-output pair, irrespective of degrees of 
morphological regularity. More importantly for our present concerns, 

output representations. In connectionist models, morphological structure 
is in fact conceptualised as the epiphenomenal by-product of an identity 
mapping between invariant portions of input and output patterns. All of 
this is in sharp contrast with rule-based approaches (e.g. Pinker & Prince, 
1988), whereby regulars are processed by structure-sensitive rules and 
irregulars are simply stored in the lexicon. 

The connectionist and rule-based views have dominated the cognitive 
debate on morphological processing of the last 25 years, mainly focusing 
on the nature of the mapping relationship between input and output 
representations. In fact, both models appear to share two fundamental 

DERIVATIONAL RELATIONSHIP

form, with the former being preliminarily available, and the latter 
being produced/parsed on-line; b) the idea that both input and output 
representations are part of the training environment, not the end result of 

and b) on a different footing and assess the computational and theoretical 
implications of this reappraisal. 

WORD-AND-

PARADIGM tradition (Matthews, 1991; Pirrelli, 2000; Stump, 2001; Blevins, 

their lexical bases, but rather mutually related through possibly recursive 

forms (Bybee, 1995; Burzio, 2004). As to assumption b), we contend that 
word representations are never NEUTRAL with respect to morphological 
operations. Knowledge of how input and output representations are mutually 
related cannot be decoupled from knowledge of how input and output 

machen and gemacht are formally related is tantamount to acknowledging 
that the two forms can be aligned in spite of -mach- occurring at different 
time positions in the two strings. This is a considerably different perspective 
on morphological processing than rule-based models are ready to take. 
According to the view we will entertain here, word representations are not 
GIVEN symbolic objects, manipulated by INDEPENDENTLY-DEFINED morphological 

DYNAMICALLY RECODED TIME-SERIES, whose perception can vary depending on 
the context and on recurrent patterns of underlying morphological structure. 

In the ensuing section, we look at how alignment issues have been 
dealt with in two fast-developing lines of scholarly research that have so 
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far made comparatively sparse contact: the Machine Learning literature on 
(un)supervised morphology induction and the psycho-cognitive literature on 
serial cognition. 

2. ALIGNMENT ISSUES

2.1 Machine learning and morphology induction

morphological formatives within morphologically complex word forms. 
To linguists, the task is reminiscent of Zelig Harris’ empiricist goal of 
developing linguistic analyses (and ultimately a linguistic ontology of word-
based categories and constituents) on the basis of purely formal, algorithmic 
manipulations of raw training data: the so called “discovery procedures” 
(Harris, 1951). 

Absence of categorical information (e.g. morpho-syntactic or lexical 

UNSUPERVISED. A different conceptualization of morphological induction 
sees the task as a CLASSIFICATION problem. The machine learner is trained 

and is tested upon the ability to assign the correct class (or the appropriate 
mapping relationship) to word forms that were not part of the training set. 
In this case, the learning regime is said to be SUPERVISED.

2.1.1 Supervised models

MAXIMUM 

ENTROPY PRINCIPLE (Berger, Della Pietra & Della Pietra, 1996; Ratnaparkhi, 
m (e.g. the root walk) in 

a word w (e.g. walked) as the task of estimating the probability of having 
the category m assigned to a constituent in w, given a representation of m 
in terms of a number of linguistic features: e.g., position of the candidate 
morph, length of the constituent, existence in a dictionary, grammatical 
category of adjacent constituents, etc. (Uchimoto, Sekine & Isahara, 2001). 

category m, the conditional probability p(m w) of having m in w, given i) 
an appropriate feature-based recoding of w in the training data and ii) the 
(maximised) overall entropy of the resulting probability distribution.1 

1 This means that the probabilistic model should NOT

made as small as necessary for the model to predict all attested data.
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MEMORY-BASED approaches to morphology induction (Daelemans & van 
den Bosch, 2005) classify novel input by analogy to stored exemplars. A 
memory-based learner assumes morphological processing to be a function 
of either lexical retrieval or similarity-based reasoning on representations 

phonological, orthographical or semantic features. To ensure that only 
features associated with ALIGNED symbols (letters or phonological segments) 
are matched, exemplar representations must be aligned preliminarily. 
Keuleers & Daelemans (2007) enforce alignment by associating exemplars 
with a syllabic template consisting of three slots: onset, nucleus and coda. 
Finally, the similarity between two strings X and Y is measured according 
to the following weighted overlapping distance:

(1)

 

 

where x
i
 and y

i
 indicate the values on the ith matching feature F

i
 taken by X 

and Y respectively, 
i i

) measures the distance between the two values 
and w

i
 is the weight associated with F

i

important that feature F
i
 is in assigning a class to an exemplar.

Other word similarity functions have been proposed in the literature. 
According to the notion of PROPORTIONAL ANALOGY (Pirrelli & Yvon, 1999), 
word similarity is a relation among four lexical exemplars:

(2) steal:stealer = cheat:cheater

with steal-stealer and cheat-cheater being pairs of lexically-related words, 
and steal-cheat, stealer-cheater representing pairs of morphologically-related 

among strings of symbols in terms of identity over (pairs of) sub-strings, as 
follows:

(3)   

where ‘u·v’ means “u concatenated with v”. Accordingly, in the proportion 
u = steal, w = er, t = cheat, 

v

morphologically spurious proportions such as cheat:corn = cheater:corner, 
each member in an analogical proportion must be a LINGUISTIC SIGN, i.e. a 
form-meaning lexical pair. Proportionality is assumed to hold on BOTH levels 
of representation simultaneously. In the case at hand, since the semantic 
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representation of cheater contains an agentive marker -ER and corner does 
not, the two words will never be part of the same analogical proportion. 

Albright and Hayes (Albright, 2002; Albright & Hayes, 2002) address 
morphological generalisation by applying the MINIMAL GENERALISATION 
algorithm (Pinker & Prince, 1988; Albright & Hayes, 2002) to the 

PRESENT PAST or 
1-SING INFINITIVE. For example, the two Italian forms bado (‘I take care’) 
and badare (‘to take care’) stand in a PRES-IND, 1-SING INFINITIVE relation. 

such as bado and badare to the left, for their shared stem to be maximised 
and the remaining change to be factored out. Given any two such 

sensitive rule, mapping one class of forms into the other class. The authors 
show that minimal rules of this kind apply accurately. Moreover, their 
reliability score (based on the number of forms for which the mapping rule 
makes the right prediction) correlates with human subjects’ acceptability 
judgement on nonce-forms. 

Connectionist models do not explicitly code morphological structure 
into input representations. Nonetheless, they need to recode input forms 
to allow recurrent morphological formatives to activate overlapping units 
(nodes) on both input and output layers. This is necessary for overlapping 
input units to eventually result in similar outputs. For example, Plunkett 
& Juola (1999) represent a (monosyllabic) input word through a (right-

cat (/kAt/) is represented 
by the training pattern ##k##A##t, the word ox (/Aks/) by #####A#ks, 
where ‘#’ represents an absent sound. Output words, on the other hand, 
are assigned the same input template augmented with two extra slots (VC) 

cats (/kAts/) 
is represented by ##k##A##t#s and oxen (/AksEn/) by #####A#ksEn. 
This enforces a morphologically-motivated alignment on input and output 

always associated with the same pattern of nodes on the output layer.

2.1.2 Unsupervised models

The task of inducing morphological knowledge from raw data (i.e. neither 

the order in which the two steps are taken. 
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Most methods, from seminal work (Harris, 1955; Hafer & Weiss, 1974) 
to more recent adaptations (Juola, Hall & Boggs, 1994; Golcher, 2006; 
Hammarström, 2009), carry out a (possibly preliminary) segmentation 
step, whereby word forms are split into candidate sublexical constituents. 

distributions in a reference corpus. For example, Goldsmith’s (2001) 
algorithm for morpheme splitting goes as follows: “take all possible 

sets of stems. For example, in Goldsmith’s notation, the list Null.er.ing.s 

is a signature for stems like count, drink, mail and sing. Signatures are 
reminiscent of the traditional notion of morphological paradigm and 

MINIMAL DESCRIPTION LENGTH, which provides a way to mathematically 

i) a “photographic” but verbose model of the data, where each word 
form belongs to a signature of its own and is generated according to the 

corpus; and ii) a very short but liberal model, with one overall signature, 
where any verb can combine with any marker according to the product 
of their independent probability distributions, thus generating many word 
forms that are not attested (including *goed for went, *stricked for struck, 
*bes for is etc.).

As an alternative to Goldsmith’s approach, some scholars have tried 

as string edit distance (Gaussier, 1999; Yarowsky & Wicentowski, 2000; 
Schone & Jurafsky, 2001; Baroni, Matiasek, & Trost, 2002) or Latent 
Semantic Analysis (e.g. Schone & Jurafsky, 2000; Baroni, Matiasek, 
& Trost, 2002; Freitag, 2005), to then look for structure both within and 
among groups. Although preliminary clustering may considerably constrain 
the search space for what is common among several groups, abstracting 
morphological processes given a family of groups is a thorny issue, 
because of the number of groups and because of the number of potential 
morphological processes. To further constrain the search space and address 

& avar, 2005, 2007; Xanthos, 2007). Each word is then separated into a 
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consonant skeleton and a vowel pattern, for them to be eventually assessed 

2.2 Morphology induction and serial cognition

The divide between supervised and unsupervised models of morphology 
induction somewhat mirrors the interplay between structured REPRESENTATIONS 

OPERATIONS. Supervised algorithms lay more 
emphasis on representations, which are assumed to be available in training. 
Conversely, in an unsupervised mode, machine learning must constrain 
mapping operations considerably. The more knowledge-rich the available 
representations are, the less complex the needed operations. If machine 
learners have no access to the internal morphological structure of their 
training data, then discovery procedures must be constrained enough to be 
able to tell relevant data from irrelevant data.

on either word representations (in a supervised learning mode) or string 
processing strategies (in an unsupervised learning mode). Indeed, for most 

this is a sensible step to take. However, this type of encoding presupposes 
considerable knowledge of the morphology in the target language and does 

morphological processes in general. Likewise, most current unsupervised 
algorithms (see Hammarström & Borin, 2011 for a recent survey) model 
morphology learning as a segmentation task, assuming a hard-wired linear 
correspondence between sub-lexical strings and morphological structure. 
However, both highly-fusional and non-concatenative morphologies hardly 
lend themselves to being segmented into linearly concatenated morphemes. 

Many of these issues have been raised in the psycho-cognitive 
literature on serial cognition. A fundamental characteristic of the human 

sounds, syllables, morphemes or words), to access them in recognition 

key issue that must be addressed to account for such a characteristic is 
how speakers code for item positions. Without position coding, it is not 
possible to retain/recognise a simple word as pop, where the same letter 
type p appears to be realised as two tokens embedded in different temporal 
contexts, or to distinguish between two anagrams such as cat and act. 

Some of the earliest psychological accounts of serial order assume 
CHAINS made up of 
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unidirectional stimulus-response links. The simplest chaining models 
assume only pairwise associations between adjacent elements of a 

stimulus only. Criticism of chaining models goes back to pioneering work 
by Lashley in the 50’s (Lashley, 1951; Houghton & Hartley, 1995; for 
a review). For example, in order to represent a word like ‘#EVERY#’ as a 

E’ must be linked 
to both ‘V’ and ‘R’. Hence, in recalling the word ‘#EVERY#’ by going 

instance of ‘E’. So-called CONJUNCTIVE CODING addresses the problem by 
anchoring a symbol to its left context, thus using distinct representations 
(e.g. the bigrams ‘#E’ and ‘VE’) as instances of the same ‘E’ type. However, 

phonemes or letters across positions: the so-called DISPERSION PROBLEM 
(Plaut et al

across word forms of differing lengths (Davis & Bowers, 2004), thus 

morphologically-related forms. 
We have no room here to discuss strengths and weaknesses of models 

of encoding time series of symbols, as proposed in the vast literature on 
IMMEDIATE SERIAL RECALL and VISUAL WORD RECOGNITION (see Henson, 1998; 
Davis, 2010; for recent reviews). It is important to emphasise at this 
juncture that when we cast the problem of lexical recognition/production 
in terms of accessing a mental representation for a familiar word (i.e. 
a memory trace), the focus of investigation is shifted from the issue of 
PROCESSING

operations to the more fundamental issue of CODING and STORING word 

address these issues on a principled basis (Pollack, 1990; Botvinick & Plaut 
2006; Sibley et al., 2008; among them). Temporal self-organising lexical 
maps (Ferro, Marzi & Pirrelli, 2011; Pirrelli, Ferro & Calderone, 2011) 
try to establish a potentially useful connection between issues of serial 
cognition and morphology induction.

3. LEXICAL MAPS

The lexicon is the store of words in long-term memory. From this perspective, 

storage of time-series of symbols are taken into account before more elaborate 
lexical functions, such as organisation, access and recall can possibly be 
addressed. Temporal SOMs (hereafter TSOMs, Ferro, Marzi & Pirrelli, 
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2011; Pirrelli, Ferro & Calderone, 2011) offer a promising computational 
framework for modelling all these issues at a considerable level of detail.

3.1 The architecture

The architecture in Figure 1 implements lexical encoding/storage through 
cascading topological maps with re-entrant temporal connections. In 
illustrating the architecture, it is useful to distinguish an INPUT LAYER 
representing the most peripheral level of input encoding, from TSOMs 
proper, where time relations between symbols are sampled and recoded 
through topological relations.

For our present concerns, individual input stimuli are letters or 
phonological segments arranged within words as time-bound signals. 
Each such unit is sampled and encoded on the input layer at discrete time 
intervals as a vector X(t) of binary values. At time t, X(t) is transferred to 
a T MAP through one-to-many, trainable connections, whose w

i,j
 weights say 

how well the input signal is transmitted from the x
j
 component of the input 

vector to the ith node on the T MAP. 

FIGURE 1. A TSOM-BASED ARCHITECTURE FOR LEXICAL ENCODING/STORAGE. A T MAP SAMPLES 

WORD-LENGTH TIME INTERVALS. A (T-1) MAP, SAMPLING THE T MAP’S OUTPUT AT THE IMMEDIATELY 

PRECEDING TIME TICK, FEEDS BACK THE T MAP THROUGH RE-ENTRANT ‘WHEN’ CONNECTIONS.

Connections coming from the input layer are referred to as ‘WHAT’ 
connections, since they provide information about WHAT is shown to the 
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map at time t. From a T MAP, the activation pattern is copied to a second 
map (the (T-1) MAP in Figure 1) through a one-to-one identical mapping 
function (with connection weights set to unity). The pattern is fed back 
to the T MAP at the ensuing time tick, through many-to-one, trainable 
connections hereafter referred to as ‘WHEN’ connections. The weights m

i,j
 

on these connections provide information on WHEN a stimulus is shown to 
the map. All in all, activation patterns on T MAP and (T-1) MAP

on a T MAP is copied onto a , which samples the input signal over 
word-length time intervals, thereby integrating all symbol-level patterns 
activated by an input word. An integrated activation pattern on the  

trace left by an input word. 

3.2 Recoding

When an individual stimulus is input at time t, each component x
j
(t) on 

the input layer is set to either 1 or 0. All T MAP’s nodes are then activated 
concurrently as a function of WHAT is shown to the map and WHEN it is 
shown. The overall level of activation H(t) of the map at time t is the result 
of a weighted summation of the activation level H

S
(t) WHAT 

CONNECTIONS, and the contribution H
T
(t) of the map’s expectation conveyed 

by WHEN CONNECTIONS: 

(4) 

with a and b measuring the comparative contribution of WHAT and WHEN 
connections respectively, and H

S
(t) and H

T
(t) 

(5) 

(6) 

where D is the dimension of the input vector, N the size, in number of nodes, 
of the T MAP, W(t) the matrix of weights on WHAT connections, and M(t) the 
matrix of weights on WHEN connections. 

W(t) to the current input 
vector X(t), the higher the H

S
(t) contribution to the map’s overall activation 

M(t) to the 
activation level H(t-1) of the (T-1) MAP, the higher the H

T
(t) contribution to 

the map’s overall activation level. 
Given the state of activation of a T MAP, the BEST MATCHING UNIT at time 

t (or BMU(t)) is the node with the highest activation value according to 
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(7) 

For our present concerns, BMU(t) represents the output of the map at 
time t. In assessing the behaviour of a map, we compare the output to the 
correct response. For example, a T MAP is said to recode an input symbol 
correctly iff:

(8) 

with  = 0.05. 

3.3 Training

FIGURE 2. SPREADING ACTIVATION OF LONG-TERM POTENTIATION (SOLID LINES) AND LONG-TERM 

DEPRESSION (DOTTED LINES) OF RE-ENTRANT WHEN CONNECTIONS OVER TWO SUCCESSIVE TIME STEPS. 

B-NODES DENOTE BMUS.

Through repeated exposure to input stimuli, WHAT connections are 
WHERE connections 

are attuned to (T-1) MAP’s expectations. This is done by maximising the 
WHAT 

connections and WHEN connections are made incrementally closer to their 
target values. This means that, during training, nodes become more and 

contexts. Moreover, nodes which are sensitive to similar stimuli tend 
to cluster together on the map. This is achieved through a propagation 
function which spreads connection weights from BMU(t) to surrounding 
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nodes as a function of the topological distance between BMU(t) and the 
surrounding node (Figure 2), and of the current learning rate of the T MAP. 
The spreading mechanism of WHEN connections plays an important role in 
the generalisation bias of a TSOM. We shall return to this important point 
in section 5. 

3.4 Recall

Lexical recall consists in “reading” an input word K off its integrated 
activation pattern on the . Intuitively, this is possible since the 
integrated pattern contains detailed information about a) the letters making 
up K, and b) their position in K. 

 

FIGURE 3. LEXICAL RECALL IN A LEXICAL TSOM ARCHITECTURE. SINGLE CHARACTERS ARE READ OFF 

AN INTEGRATED PATTERN ON THE , BASED ON (T-1) MAP’S RE-ENTRANT EXPECTATIONS

For any word K of length n
K

on the  as the union set of all activation patterns triggered by the 
word’s letters on the T MAP: 

(9) 

and 

(10) 
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(4) above, with:

(11) 

K is the 
input word associated with 

K
, then X(t) in (8) is the input vector encoding 

the tth letter in K. This ensures that a BMU(t) is recalled accurately only if it 
matches both the correct letter and its time-stamped position in the input 
string.

3.5 Alignment and generalisation

Lexical maps can be shown to generalise to novel words. To understand 
how this works, it is useful to look at ACTIVATION CHAINS of morphologically-
related words on a . The activation chain relative to the word K 

consists of all BMUs discharging in association with the letters in K. Figure 4 
(left) shows BMU chains associated with the Italian verb forms VEDIAMO ‘we 
see’, VEDETE ‘you see’ (second person plural), and CREDIAMO ‘we believe’, 
with the ending -IAMO (‘1st person plural present indicative’) shared by two of 
the three forms, activating the same BMUs. 

      

FIGURE 4. BMU ACTIVATION CHAINS FOR VEDIAMO-VEDETE-CREDIAMO ON A 20×20 MAP (LEFT) AND 

THEIR WORD-GRAPH REPRESENTATION (RIGHT).

Activation of the same BMU

to which the map perceives these words as similar. It tells us how well 
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grid in Figure 5 (right) measures the difference in activation levels between 
pairs of BMUs responding to different input words. In particular, for each 
cell c

i,j

(12) 

 

 

FIGURE 5. TOPOLOGICAL DISTANCE MATRIX (LEFT) AND ACTIVATION SPREAD MATRIX (RIGHT) FOR 

GERMAN GEMACHT AND MACHT. DARKER BOXES SIGNIFY THAT THE CORRESPONDING LETTERS ARE 

CLOSER ON THE TOPOLOGICAL SPACE OF THE MAP (LEFT) AND ARE CLOSER IN LEVELS OF ACTIVATION 

(RIGHT). ZEROS INDICATE THAT THE TWO LETTERS ACTIVATE PRECISELY THE SAME NODE

Zero values in the grid indicate that letters in the ith row and the jth 
column of the grid activate the same node on the map. Node co-activation 
correlates with inter-node topological distance in the map space, as shown 
by the distance matrix to the left of Figure 5.

Co-activation is key to generalisation. This is illustrated in Figure 4 
(right) where BMU chains are unfolded and arranged vertically in a WORD 

GRAPH. In the graph, circles are map nodes, and directed arcs represent 
re-entrant WHEN connections. Grey circles are nodes that are activated in 
association with the form CREDETE (‘you believe’, second person plural), 
under the assumption that CREDETE was not shown during training. Note 
that there is no direct WHEN connection from the ‘D’ node associated with 
CRED- to the BMU ETE (‘second person plural present 
indicative’). Nonetheless, the latter chain is activated indirectly, due to co-
activation of the the ‘D’ node associated with the root VED-. This shows that 
novel chains of BMU

levels of parallel activation spreading from time-aligned BMU chains. This 
is the by-product of the propagation function spreading WHEN connections 
from BMU(t-1) to BMU(t) and its neighbouring nodes during learning (Figure 
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2 above). Spreading activation of WHEN connections thus enforces the map’s 
propensity to accept novel words by extending learned connections to local 
topological neighbourhoods. It should be noted, incidentally, that the entire 
lexicon stored in a TSOM can be represented as a huge word graph with 
the symbol ‘#’ on the top node.

In previous work (Marzi, Ferro & Pirrelli, 2012b), we assessed how well 
this generalisation strategy works on Italian and German data by comparing 
two different settings of a and b

German, for a = 0.5 and b = 1. The advantage can be explained in terms 
of a difference in word activation and recoding. For a = 0.5, the identity 
of the symbol shown to the map carries more weight on node activation 
than the symbol’s timing does. In TSOMs, nodes that present comparable 
activation levels in association with the same stimuli are clustered in 
topologically connected areas. This means that neighbouring nodes will tend 
to be sensitive to symbol identity. Sub-clusters of nodes will be selectively 

Sensitivity to symbol identity (as opposed to symbol timing) makes 
TSOMs more able to capture morphological structure. This is particularly 
true of concatenative morphologies, where the notion of morphological 

recurrent substrings at different positions in time. Nonetheless, highly-

(mache/machst ‘to 
machen/gemacht ‘to make’/‘made’ 

past participle) and combinations thereof ( /gefunden 

past participle). It is thus interesting to investigate to what extent local 
topological propagation of WHEN connections can deal with this range 
of phenomena in generalisation. How can a lexical self-organising map 
simulate the different inductive mechanisms that are needed to deal with 
the entire range of morphological processes of German conjugation? Can 
we conceive of better generalisation strategies than local propagation? 

investigating these mechanisms? 
Computational simulations are helpful in addressing all these issues 

purpose.
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4. THE EXPERIMENT

4.1 Materials and method

participle, present indicative and präteritum forms) of German verbs were 
selected from the Celex database (Baayen, Piepenbrock, & Gulikers, 
1995), totalling 752 uniformly-distributed verb forms. Of them, 694 forms 
were selected to be part of the training set. The remaining 58 forms, from 

participle forms gefragt and gesehen

with present/präteritum forms beginnen/begannt, bleibe/blieben and denkst/

dachten mache/machst/machen). All forms were 
encoded as strings of capitalised letters preceded by ‘#’ and ended by ‘$’, 
and administered to a T MAP one letter at a time, with re-entrant Hebbian 
connections being reset upon ‘#’. Umlauted characters were encoded as 
lower-case digraphs (e.g. ‘#HoeREN$’ for hören) and the sharp s ‘ß’ as ‘ss’ 
(e.g. ‘#HEIssEN$’ for heißen). In both cases, pairs of lower-case letters are 
processed as one symbol. All letters were encoded as mutually orthogonal 
binary vectors. 

Ten map instances with the same parameter setting (size = 35×35, a = 
0.5, b = 1) were trained on the set of 694 forms over 100 epochs each, and 
tested independently on the remaining 58 forms for lexical recall. For each 
test word K, we sampled the corresponding integrated activation pattern  on 
the .  was copied onto the T MAP for the input word K to be read 

above, with  = 0.05.
Given an input word K of length n

K
, we estimated the recalled character 

at time t as BMU(t) of H(t), with H(t

(13) 

(14)
 

(15)
 

for t = 2, …, n
K
. 
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FIGURE 6. LEXICAL RECALL IN A LEXICAL TSOM  ARCHITECTURE AUGMENTED WITH A REHEARSAL 

COMPONENT REFRESHING THE AUDITORY CONTENT OF THE (T-1) MAP. THE T-1 OUTPUT ‘C’ IS 

INTERNALLY CLASSIFIED AND INPUT BACK TO THE (T-1) MAP FOR ALL ‘C’-NODES TO BE REACTIVATED. 

EXPECTATIONS OF ‘C’-NODES ARE THEN USED TO OUTPUT ‘D’ AT TIME T.

Intuitively, R1 H(t) as the integration of  with 
the map’s expectations at time t, based on H(t-1)

above and the lexical architecture of Figure 3. In R2 -
cal expectation in (13) is augmented with the GLOBAL expectation of the 

K, a 
TSOM can take into account the  
word graph representing the entire memorised lexicon. Global expectations 
are time-aligned with the currently recalled character BMU(t), and integrated 
with the local expectations prompted by the previously recalled character 
BMU(t-1). Finally, R3 R2, whereby global ex-
pectations are selectively integrated with the expectations of all nodes re-
coding the symbol associated with BMU(t-1). These expectations are prompt-
ed by the input symbol recalled at time t-1 being COVERTLY REHEARSED and 
fed back to refresh the map’s activation pattern. Figure 6 depicts an aug-
mented lexical architecture where a re-entrant activation pattern is produced 
by a mechanism of subvocal rehearsal similar to the PHONOLOGICAL LOOP 
classically invoked by Baddeley (1986) for refreshing the short-term buf-
fer’s auditory content. 
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4.2 Results

Average scores of recall routines R1, R2 and R3 on known forms (training 
set) were 97.04 (  = 0.34), 98.29 (  = 0.39), 98.66 (  = 0.54) respectively, 

R3 strategy 
over R1 an R2.  To assess the independent impact of different morphological 
processes on the generalisation bias of our architecture, recall scores were 
evaluated for each of the three process classes in the test set. Scores of 
recall accuracy on novel forms (test set), averaged over 10 map instances, 
are plotted in Figure 7 (top panel). The panel shows accuracy scores on 

are arranged vertically and highlighted with different shades of grey. Each 
shaded column groups three boxes, one for each recall strategy: R1, R2 
and R3 R3 and R2 is 

p < 0.001). Likewise, difference in accuracy on stem 
alternation between R2 and R1 p < 0.001). Finally, the 
bottom panel of Figure 7 shows the average distance between BMU chains 
in both recoding and recall. The distance correlates negatively with recall 
accuracy scores. Recall is accurate when the map can restore, in recall, the 
activation chain that was produced in recoding. 

 

FIGURE 7. TOP PANEL: BOXPLOT DISTRIBUTION OF ACCURACY SCORES ON LEXICAL RECALL OF NOVEL 

GERMAN FORMS (TEST SET), PLOTTED BY MORPHOLOGICAL PROCESSES AND RECALL STRATEGIES. 

BOTTOM PANEL: BOXPLOT DISTRIBUTION OF TOPOLOGICAL DISTANCE BETWEEN RECODING AND RECALL 

ACTIVATION CHAINS FOR THE SAME NOVEL GERMAN FORMS.
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5. GENERAL DISCUSSION

LEVELS of input encoding. A peripherally encoded 
input vector is eventually RECODED on a map proper. It is the latter level 
that provides the long-term representation whereby the structure of input 
words is eventually PERCEIVED

is important for two reasons. First, it is neuro-biologically plausible, in 
keeping with what we know about other levels of representation of symbolic 

of geometric lines in the occipito-temporal area of the left hemisphere, to 
more temporal representations which abstract away from physical features of 
letters such as position in the visual space, case and font (Dehaene, 2009). 
Secondly, TSOM’s recoding is sensitive to input conditions. Since recoding 
is a function of training, cumulated activation patterns resulting from 
exposure to different data lead to different recoded representations. Other 
connectionist architectures, which fail to make a distinction between levels 
of input encoding, fall prey of ad hoc representational schemata such as 
Wickelcoding and positional coding, which are given at the outset and do not 
develop as a result of input exposure.

assessed three such strategies on the task of recalling novel word forms. 
R1

of temporal connections over neighbouring map nodes (Figure 2). The 
strategy enforces inter-node training dependence, allowing expectations of 
up-coming symbols to be transferred from one activation chain to another, 
based of topological contiguity (Figure 4, right). R1 proves to be effective 

but it fares disappointingly on past participles and stem alternations. In fact, 
a corollary of R1

immediately preceded by the same left context.  However, in generalising 
vowel alternation – say, from binden to banden based on the analogy to 

 vs. fanden – the identity condition in the left context is not met.
R2

aligning the word to be recalled with memorised alternating words of 

generalising over stem alternating forms (Figure 7, top panel). However, 
time-aligned propagation of inter-paradigmatic forms performs poorly on 
past participles, the small improvement of R2 over R1 being statistically 



270

CLAUDIA MARZI, MARCELLO FERRO AND VITO PIRRELLI

generalisation strategy, for a ge ge-macht) to be aligned 
with the corresponding stem in wordinitial position (macht). In other 
words, the map has to be tolerant to variation in time position of recurrent 
morphological constituents.

R3

(Figure 6). The input symbol -m- in gemacht re-enters the symbol-level 
map after recall, and activates other m-nodes, including those discharging 
in association with macht

paradigm). Co-activation of paradigmatically-related forms through 
subvocal rehearsal puts the map in a stronger position to guess novel 
German past participles as well as stem alternating forms. 

To sum up, recall of novel forms has to do with paradigm induction, 

with other morphologically-related, stored word forms. Proper alignment 

pressure of intra-paradigmatically and inter-paradigmatically related 
forms be brought to bear. At the same time, it relies on a proper, time-
sensitive recoding of the symbols making up both stored and novel 
words. The extensive alignment between recoding activation chains and 
recall activation chains (Figure 7, bottom panel) show that alignment and 
recoding lie at the root of morphological generalisation, supporting the 
view that representation and processing issues are mutually implied in 
lexical competence. Finally, the success of R3 highlights the importance of 
re-entrant feed-back mechanisms in monitoring generalisations. 

6. CONCLUDING REMARKS

The computational analysis offered here accords well with recent neuro-
physiological evidence of a bidirectional perisylvian pathway in the human 
brain, going from the superior temporal gyrus (Wernicke’s area) to the 
Broca’s area through the Inferior Parietal Lobule (Catani, Jones & ffytche, 
2005). The pathway provides the neuro-cognitive substrate to the retention 

in working memory, lending support to the centrality of memory-based re-
entrant mechanisms in language processing. This allows us to establish an 
interesting connection between issues of word representation, storage and 
processing on the one hand, and aspects of lexical architecture on the other 
hand. 

Our computational analysis of low-level aspects of word recoding and 

architecture based on memory self-organisation. It shows, nonetheless, 



271

WORD ALIGNMENT AND PARADIGM INDUCTION

that we can learn a lot about word structure by focusing on a range of 
issues that are normally taken for granted in the theoretical debate on 
morphology: from the ontogenesis of word representations to the dynamic 
of memory processes. By bringing together paradigm-based approaches to 

from self-organisation as time-aligned patterns of node activation shared 
by memorised forms. Notably, the schemata depend on both i) speakers’ 
recoding and storage strategies, and ii) the underlying paradigm structure 

processing is in line with a construction-based reconceptualization of 
language rules as emergent lexical schemata (Jackendoff, 2002; Booij, 
2010) and is conducive to a coherent ABSTRACTIVE model of morphological 
competence (Blevins, 2006; Pirrelli, Ferro & Marzi, forthcoming). 
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