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Abstract

A growing body of evidence in cognitive psychology and neuroscience suggests a deep inter-

connection between sensory-motor and language systems in the brain. Based on recent neurophysi-

ological findings on the anatomo-functional organization of the fronto-parietal network, we present

a computational model showing that language processing may have reused or co-developed orga-

nizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed

model combines principles of Hebbian topological self-organization and prediction learning.

Trained on sequences of either motor or linguistic units, the network develops independent neuro-

nal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons

responding to the same stimulus or class of stimuli tend to cluster together to form topologically

connected areas similar to those observed in the brain cortex. Simulations support a unitary

explanatory framework reconciling neurophysiological motor data with established behavioral evi-

dence on lexical acquisition, access, and recall.

Keywords: Motor chains; Lexical chains; Serial working memory; Computational modeling;

Self-organizing maps; Somatotopic organization; Prediction

1. Introduction

The classical view that language comprehension and production are the result of cogni-

tive operations on abstract amodal symbols is increasingly challenged by evidence that

language processing exploits, at least partially, the same neural systems supporting per-

ception, action, and emotion (Barsalou, 2008; Glenberg & Kaschak, 2002; Pulverm€uller
& Fadiga, 2010). Somatotopic activations of the premotor and parietal cortices have been
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experimentally observed in connection with both action performance and linguistic tasks

such as reading and listening to verbal expression of actions (Pulvermuller, 2005; Rizzolatti,

Cappa, & Perani, 2005; Tettamanti et al., 2005). In this article, we intend to explore a

somewhat complementary and more functional view on this relationship. We offer a com-

putational analysis and a conceptual meta-analysis of experimental results supporting the

hypothesis that learning/processing mechanisms for both motor and linguistic structures

in the brain are functionally based on a common pool of principles governing topological

self-organization, prediction-driven learning, and the dynamic between short-term and

long-term memory processes. These mechanisms develop neuronal “chains” consisting of

dedicated context-responsive nodes, organized into topological clusters of type-responsive

nodes. This may shed light on structural similarities observed between action and lan-

guage, such as hierarchical organization, compositionality and chunking, to suggest that

(a) phylogenetically, language processing could have reused (or co-developed) organizing

principles, processing, and learning mechanisms typical of motor areas (Rizzolatti &

Arbib, 1998); (b) ontogenetically, knowledge of serial order through motor exploration

can bootstrap language acquisition (Dominey & Ramus, 2000).

2. Action encoding in the brain

The encoding of motor actions in the brain is achieved by a network that comprises

various areas elaborating information at different levels of detail. In decreasing order of

abstractness, one can find the parietal lobe, the premotor cortex, and the primary motor

cortex. The parietal cortex is traditionally considered an association area that integrates

different sensory modalities, encodes motor acts, and provides them with specific sensory

information. Recent experiments (Fogassi et al., 2005; Gallese, Fadiga, Fogassi, &

Rizzolatti, 2002; Rozzi, Ferrari, Bonini, Rizzolatti, & Fogassi, 2008) have studied the

functional and cytoarchitectonic properties of this area characterizing its somatosensory,

visual, and motor responses. These studies show that the inferior parietal lobule (IPL)

contains a rich variety of neurons responsive to distinct sensory stimuli and discharging

in association with different types of actions such as reaching, grasping, and bringing to

the mouth, both when executed and when observed. Additionally, motor responses are

somatotopically organized with the mouth represented more rostrally (in PF), then the

hand (in PFG) and the arm more caudally (in PG) with a certain degree of overlap

between adjacent representations (see Fig. 1). In each subdivision, the motor activity is

associated with correlated somatosensory and visual responses.

Another key feature of the recorded motor neurons in IPL is that their response is

strongly modulated by the intended goal of the whole action sequence (Chersi, Ferrari, &

Fogassi, 2011; Fogassi et al., 2005). It has been hypothesized that this brain area presents

a highly structured organization, where pools of neurons encoding subsequent motor acts

leading to a specific goal are connected in goal-driven chains (see Fig. 2). According to

this view, the execution and the recognition of actions are achieved through the propaga-

tion of activity within the appropriate chains (thus resulting in the firing of only specific
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neurons). Furthermore, neurons in one chain are not interchangeable with those of other

chains even if they code the same motor act. The hypothesis is justified by the dense

interconnection between IPL and the dorsolateral prefrontal cortex, which is generally

assumed to play the role of maintenance and goal-directed control of sequential

Fig. 1. Functional organization of the parietal cortex of a monkey. Dots of different colors represent different

motors acts. The size indicates the local percentage of neurons encoding that specific act (modified from

Rozzi et al., 2008).

Fig. 2. Simplified representation of the “Chain Model” (Chersi et al., 2011). Colored ellipses represent sub-

populations of neurons encoding specific motor acts in the parietal cortex (IPL) or intentions in the prefrontal

cortex (PFC). Arrows indicate the connections between different subpopulations (for the sake of clarity, not

all connections have been indicated). Sensory areas, which comprise the superior temporal sulcus, the inferior

temporal, somatosensory, and auditory areas, provide information about the ongoing action, while premotor

and motor areas convert signals into motor commands.
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representations (Goldman-Rakic, 1987; Petrides, Alivisatos, Meyer, & Evans, 1993).

Although in this model prefrontal cortex (PFC) has a modulatory role only for IPL, the

anatomical connections between PFC and premotor/motor cortexes (Guye et al., 2003;

Young, Scannell, & Burns, 1995) make room for the hypothesis that similar loops exist

at multiple levels of the brain motor hierarchy.

3. Lexical encoding in the human brain

Diffusion tensor magnetic resonance imaging data of the left hemisphere of human

brain have provided neuroanatomical evidence of a bidirectional perisylvian pathway

from the superior temporal gyrus (STG, or Wernicke’s area) to Broca’s area through IPL

(Catani, Jones, & ffytche, 2005). The network defines the neuro-cognitive substrate to the

retention of sequences of linguistic units and orosensory goals for their vocalization in

working memory (Gathercole & Baddeley, 1989; Papagno, Valentine, & Baddeley,

1991). Since Baddeley’s pioneering work, working memory was assumed to include a

volatile phonological store in the supramarginal gyrus (SMG) and a “phonological loop”

mechanism refreshing the store’s auditory content through subvocal rehearsal (Awh,

Smith, & Jonides, 1995; Frackowiak, 1994; Paulesu, Frith, & Frackowiak, 1993). More

recently, several researchers (e.g., D’Esposito, 2007; Wilson, 2001) have suggested a

view of verbal working memory as a dynamic form of sensory-motor integration. Accord-

ingly, the storage component should be located in auditory-responsive fields in STG

(Hickok & Poeppel, 2004; Shalom & Poeppel, 2008), with the functional connectivity of

the posterior segment in the arcuate fasciculus (from STG to SMG) providing a bidirec-

tional mapping: (a) auditory-to-motor mappings support verbatim repetition of heard

speech, and (b) motor-to-auditory mappings are used to activate auditory representations

of speech through controlled articulatory rehearsal in frontal circuits. Under this view,

integration of auditory-motor circuits ensures maintenance/control of transient activation

of long-term memory structures in the absence of external stimuli.

The hypothesis establishes a close connection between lexical processing and working

memory in terms of the anatomical arrangement of the neural networks involved. Linguistic

units that are frequently sequenced together are consolidated in Wernicke’s area, where they

are accessed and executed as highly automatized routines. This increases fluency and

accounts for the memory effect known as “chunking” (Cowan, 2000; Miller, 1956). Finally,

the view establishes an interesting parallelism with the encoding and execution of motor

sequences as chains of dedicated and topologically organized neurons (Chersi et al., 2011).

Computational modeling of self-organizing memories can bridge evidence in both domains.

4. Computational modeling

Topological models of the mental lexicon based on temporal self-organizing maps

(TSOMs; Koutnik, 2007; Ferro, Ognibene, Pezzulo, & Pirrelli, 2010) can mimic the
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spatial and temporal organization of memory structures supporting the processing of sym-

bolic sequences (Ferro, Marzi, & Pirrelli, 2011; Marzi, Ferro, & Pirrelli, 2012; Pirrelli,

Ferro, & Calderone, 2011). Through repeated exposure to recurrent word forms, TSOMs

develop chains of discharging nodes (Fig. 3). In some cases, node chains are arranged in

rooted hierarchies, where each node can be reached by one connection only (“word tries”:

Fredkin, 1960). In other cases, the chains allow the same node to be reached by multiple

connections (“word graphs”). Word tries are entrenched, dedicated memory structures,

whereby partially overlapping strings activate distinct nodes. Word graphs, conversely,

allow for shared substrings to activate identical nodes. These competing memory struc-

tures emerge from topological self-organization, whereby nodes responding to the same

input symbol tend to cluster in topologically connected regions of the map, similar to

those observed in cortical areas involved in the classification of sensory data (Aflalo &

Graziano, 2006). The topological distance between any two nodes thus reflects their

degree of specialization to stimuli in the input space and is a function of frequency distri-

butions in the training data, degree of structural redundancy, and learning epochs.

TSOMs provide a suitable computational framework to test fundamental mechanisms

underpinning serial cognition and self-organization. In what follows, we show how differ-

ent frequency distributions of training data affect the developmental trajectory of a TSOM

through the combined interplay of competition and familiarization, and we relate the

observed dynamics to available neurophysiological and behavioral evidence. This may

provide an explanation of “what” is observed and “where” in the brain, in terms of

“how” it comes about.

5. The architecture

TSOMs augment Kohonen’s self-organizing maps (SOMs; Kohonen, 2001) with

weighted re-entrant temporal connections (Fig. 4). Nodes on the input layer are fully con-

nected with the map activated at the current time t, or (t) map, to which temporal connec-

tions reverberate the map’s activation pattern at the immediately preceding time tick,

buffered on the (t�1) map. When an input stimulus is presented, (t) map nodes are acti-

vated synchronously, with the most highly activated node, or best matching unit (BMU
(t)), being selected as the winner. We call pattern recoding the transformation of an input

vector into a map activation pattern. Activation of node ni at time t is the sum of two val-

ues. The first value says how close input connection weights of node ni are to the current

Fig. 3. Node chains in a TSOM for the Italian forms vediamo (“we see”) and crediamo (“we believe”). Dedi-

cated chains are reminiscent of word tries (left) and interlocked chains of word graphs (right). In word graph-

like chains, connections to competing, less highly activated nodes (dotted arcs) are not severed.
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input representation. The second value says how predictable the current input is on the

basis of the activation pattern on the (t�1) map. In presenting a sequence of stimuli, acti-

vation patterns of the (t�1) map are accumulated in the Σ map, where the input sequence

is temporarily stored as a short-term integrated activation pattern.
TSOMs can be trained on sets of input sequences. During training, at each time t,

BMU(t) adjusts its weights on both input connections and temporal re-entrant connec-

tions, and propagates adjusted values to neighboring nodes. Adjustment of input connec-

tions makes weights closer to input vector values. Adjustment of temporal connections,

on the other hand, potentiates the strength of association from BMU(t�1) to BMU(t) (and
neighboring nodes) and depresses the strength of association from all other nodes on the

(t�1) map to BMU(t) (and neighboring nodes). This encodes the network probabilistic

expectations over sequences of symbols, thereby developing dedicated chains of nodes

reminiscent of word tries (Fig. 3, left).

6. Testing motor and lexical chains

After training, weights on both input connections and re-entrant temporal connections

are frozen and the map is tested on two tasks: pattern recoding and pattern recall. Accu-
racy in pattern recoding measures the vector distance between the current input vector

and the input connection weights of the corresponding BMU. We count a hit, if the vector

distance is below an error threshold (10% of max error). A sequence is recoded

Fig. 4. A TSOM-based lexical architecture. Activation patterns over consecutive time ticks (pattern recod-
ing) are buffered into a Σ map, where a whole input sequence is represented topologically (integrated activa-
tion pattern). Re-entrant temporal connections are eventually used to recover the appropriate order of input

stimuli from the Σ map (pattern recall). The figure shows patterns of activation upon presentation of the

character “D” in the string “ABCD.” Labels indicate which BMU is activated in association with a particular

symbol. Sinusoids on top of each map represent activation persistence over time, with activation on the

Σ map spanning several time ticks.
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accurately if all its units are recoded accurately. On pattern recall, the map reinstates an

input sequence from its short-term integrated activation pattern on the Σ map, based on

temporal connections only (i.e., with no external information being provided by the input

layer: Fig. 4). A stimulus is accurately recalled if the vector distance between the stimu-

lus input vector and the input connection weights of the reinstated BMU is below thresh-

old. A sequence is recalled accurately if all its units are recalled accurately. In our

experiments, the architecture is trained to memorize patterns representing sequences of

either motor acts (experiment 1) or letters (experiment 2). During training, multiple

instances of an input sequence are shown to the map, according to the frequency distribu-

tion associated with the sequence. Hereafter, we will speak of types to refer to sequences,

and of tokens to indicate sequence instances.

6.1. Experiment 1

6.1.1. Method
A training set of partially overlapping goal-directed action chains was obtained by

combining 19 distinct motor acts in sequences of different length. Each sequence

started with a goal, followed by the motor acts taken to attain the goal. For exam-

ple, the motor sequence “reaching, grasping and taking food for eating” is encoded as

“ToEat, Reach, Grasp, Take,” with each item in the sequence being input to the map

as an independent stimulus at time t. TSOMs of different size (from 25 up to 225

nodes) were trained on motor sequences for 100 learning epochs each. To investigate

the interplay between frequency, competition, and familiarization, experiments were run

on two different frequency distributions over the same training set: a uniform distribu-

tion (with sequences presented 10 times each) and a skewed distribution (with some

sequences being presented 50 times more frequently than others). For each different

combination of map size and training data distributions, we repeated the experiment 20

times.

6.1.2. Results
Trained maps (Fig. 5) were tested on two tasks: pattern recoding and pattern recall

(Fig. 6). Test stimuli consisted of the same motor sequences used for training. We also

looked at the topological distance of BMU chains activated by the same input subse-

quence through both learning epochs and maps of growing size (Fig. 7).

6.2. Experiment 2

6.2.1. Method
A non-defective Italian verb can be inflected for over 50 different combinations (or

paradigm cells) of morpho-syntactic features such as tense, person, number, and mood.

We selected 13 Italian verbs by decreasing values of frequency distribution in a newspa-

pers corpus and picked up 15 inflected forms of each verb from the same set of paradigm

cells. The resulting 195 forms were encoded as strings of letters preceded by a blank
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character to form the training set. Each string was input to a TSOM one character at a

time. TSOMs of different size (from 100 up to 1600) were trained over 100 epochs. To

analyze the influence of token/type frequency in training, experiments were run on two

different distributions: the real corpus distribution of 195 inflected forms (skewed distri-

bution) and a uniform distribution. Each combination of map size and training regime

was repeated five times.

Fig. 5. Activation chains of BMUs triggered by “ToEat, Reach, Shape, Grasp, Take” and “ToPlace, Reach,

Shape, Grasp, Place” on a 11 9 11 TSOM trained on skewed distributions. Different nodes selectively

respond to “Reach, Shape, Grasp” when the sequence is seen in the two action patterns.

Fig. 6. Accuracy on pattern recoding and recall for maps of different size, trained on uniform (top) and

skewed (bottom) distributions of input data. Skewed distributions make low-frequency data more difficult to

recall, with high-frequency patterns strongly competing for dedicated chains. Scores are averaged across 20

repetitions of the same experiment.
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6.2.2. Results
The topological organization of trained maps was monitored through learning epochs

and probed on two tasks: word recoding and word recall. Test stimuli consisted of the

same 195 forms used for training. Results are reported in Fig. 8 (right). We also mea-

sured the topological distance between nodes that discharge upon presentation of an infin-

itival ending in a target word (e.g., ere in avere “to have”), and nodes that discharge

during presentation of the same ending in all other test words (Fig. 9, top). Finally, the

same distance was measured within two groups of verbs, {avere, credere, essere} and

{tenere, vedere, volere}, in the two conditions of uniform and skewed distribution

(Fig. 9, bottom).

7. General discussion

Our simulations were intended to establish a connection between motor and lexical

tasks, serial working memory, and sequential processing. Evidence of different pools of

neurons being activated by goal-specific motor acts emerged as the result of a process of

adaptive specialization of long-term memory circuits for serial cognition (Experiment 1).

In TSOMs, the process is accounted for as the outcome of a dynamic trade-off between a

predictive bias for dedicated chains and available memory resources. When a map is

trained on several motor sequences, recoded sequences compete for map space as a

function of their distribution. Fig. 7 (left) shows the average topological distance between

Fig. 7. Left: internode distance for “Reach-Shape-Grasp” in maps trained on uniform (“U,” solid lines) and

skewed (“S,” shaded lines) distributions of motor sequences over the first 30 learning epochs. Goal-specific

acts recruit distinct nodes in their order of appearance in the sequence. High-frequency sequences are shown

to recruit dedicated chains earlier than uniformly distributed sequences. Distance values are averaged across

20 repetitions. Right: internode distance for “Reach-Shape-Grasp” in maps of different size trained on uni-

form and skewed sequence distributions. Smaller maps are more sensitive to competition effects prompted by

skewed distributions. Values are averaged across 20 repetitions for each map size. Distances are normalized

with respect to the map’s diagonal.
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BMUs for “Reach,” “Shape,” and “Grasp” in the sequences “ToEat, Reach, Shape, Grasp,

Take” and “ToPlace, Reach, Shape, Grasp, Place,” through the first 30 learning epochs.

The two sequences activate the same nodes at early learning epochs, to gradually recruit

more dedicated nodes as learning progresses. In the end, fully distinct chains develop.

High-frequency sequences demonstrably develop dedicated chains earlier than low-fre-

quency sequences. This is conducive to better recall, particularly in small-size maps

where competition for space is stronger and goal-specific actions are recoded compara-

tively further apart than in larger maps (Fig. 7, right). All of this is compatible with the

organization of monkeys’ parietal and premotor cortex (Bonini et al., 2010, 2011; Rozzi

et al., 2008) where topological constraints reflect proximity of actions in a behavioral

space (Aflalo & Graziano, 2006). Furthermore, it is in good agreement with the hypothe-

sis that the monkeys’ action repertoire is structured into dedicated chains, including spe-

cialized neural units (Chersi et al., 2011; Fogassi et al., 2005), as confirmed by a

microanalysis of levels of activation of discharging nodes. Table 1 shows the number of

nodes that are more highly activated by “Grasp ToEat” (ToEat > ToPlace”), nodes that

are more highly activated by “Grasp ToPlace” (ToPlace > ToEat”), and nodes that are

equally activated by “Grasp” in the two contexts (ToEat = ToPlace), for both uniform

and skewed distributions of the two goals. In the skewed distribution condition, the

uneven allocation of goal-specific nodes (“ToEat 6¼ ToPlace”) shows that the number of

goal-specific nodes can be a function of how often a motor act is practiced in connection

with a particular goal. Our data are consistent with data reported by Fogassi et al. (2005),

Fig. 8. Left: A 20 9 20 TSOM trained on a skewed distribution of Italian verb forms. Nodes with different

colors are sensitive to different alphabetical symbols with accuracy proportional to dot size. Arrows connect

sequentially activated BMUs (activation chains) triggered by the Italian infinitival forms essere (“to be”) and

avere (“to have”). Note that distinct nodes discharge in association with the same ending –ere. Right: Accu-
racy in word recoding and recall on maps of increasing size, trained on uniform and skewed distributions.

Skewed distributions make low-frequency forms harder to recall from smaller maps. Scores are averaged

across five instances of the same experiment.
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and they support the suggestion that brain areas in IPL provide the opportunity of using

both general (goal-aspecific) and goal-specific information simultaneously, with frequent

motor chains being compiled into a sort of “lexicon” of routinized behavioral patterns.

The word lexicon is organized according to similar principles. Converging empirical

findings suggest that surface word relations constitute a fundamental domain of lexical

competence, as shown by the interplay between form frequency, family frequency and

family size effects in both inflectional and derivational word families. It is a well-estab-

lished fact that the token frequency of an inflected form facilitates lexical access and cor-

relates negatively with response latencies in visual lexical decision (Taft & Forster, 1975;

Whaley, 1978). More recently, token frequency effects are shown to interact with family

frequency. The more frequent an inflected form is relative to its base (e.g., walked vs.

walk), the more salient the whole is relative to its parts (Hay & Baayen, 2005). A more

uniform frequency distribution over members of the same inflectional paradigm makes

them more readily accessible (Baayen, Feldman, & Schreuder, 2006; Moscoso del Prado

Mart�ın, Bertram, H€aiki€o, Schreuder, & Baayen, 2004), favoring a better allocation of

memory resources. Our results are in keeping with this evidence. Despite ubiquitous pat-

terns of redundant morphological structure in training data, and contrary to considerations

of storage economy, TSOMs develop dedicated memory chains (word tries) to process

high-frequency inflected forms. In Fig. 9 above, nodes that discharge in association with

endings in high-frequency forms are significantly more distant from nodes discharging

Fig. 9. Top panel: Box plots of topological distances between map nodes discharging on Italian infinitival

endings presented with uniform (“U”) and skewed (“S”) distributions. The distance is significantly larger

(p < 0.001) for high-frequency verb forms than for the same forms in a uniformly distributed training set.

Bottom panels: Average distances between nodes discharging on infinitival endings within two groups of

verbs. Within-group distances differ significantly between low-frequency and high-frequency verbs (right),

and they do not differ when the same verbs are uniformly distributed (left). (Distances are averaged across

five instances of the same experiment, f(x) indicates form frequency.)
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when the same endings are shown in uniformly distributed forms. Ferro et al. (2010)

show that the strategy is advantageous for word processing, since dedicated memory

chains minimize the number of one-to-many internode transitions (schematically shown

in Fig. 3, right), thus reducing the degree of uncertainty in accessing/recalling a word

form.

All in all, experiments 1 and 2 support Fogassi and colleagues’ conjecture that the use

of goal-specific neural units may enhance execution and recognition of action sequences

(especially habitual ones) by reducing uncertainty at the level of their neural coding.

Moreover, they are in keeping with a view of working memory as an emergent property

of the functional interaction of short-term and long-term memory structures. In TSOMs,

long-term temporal expectations make it easier for a map to recall a sequence recoded in

a volatile integrated activation pattern, enhancing successful prediction of upcoming sym-

bols, in line with behavioral and neuroimaging results (DeLong, Urbach, & Kutas, 2005;

Federmeier, 2007).

In spite of their analogies, experiments 1 and 2 present important differences. In exper-

iment 1, action chains are assumed to be activated while performing a certain motor

behavior, whereas lexical chains in experiment 2 develop upon perceiving a certain

sequence of letters out of context. Accordingly, while an action intention is set before the

beginning of a chain of movements and already affects the first motor act, we could not

simulate a similar effect with lexical chains for context-free word recognition. More eco-

logical assumptions concerning the way words are administered to a lexical map and a

more articulated lexical architecture including levels of lexico-semantic representation

will allow us to simulate such a goal-oriented predictive bias. Finally, although motor

and lexical chains are assumed to insist on different cortical areas (IPL and STG, respec-

tively), the role of IPL as a critical interface between auditory and motor-based represen-

tations is consistent with the idea that IPL can support, in addition to frontal regions, the

development of sensory-motor chains for lexical repetition/rehearsal.

8. Concluding remarks

Common computational principles of memory self-organization and predictive learning

may underlie storage and processing of lexical and action chains in the primate brain.

The hypothesis is compatible with what we know about the neuroanatomical network

supporting working memory and sequential cognition. Our computational architecture

shows that common principles could guide the development of memory structures sup-

porting efficient processing in both action and linguistic domains. Neuroanatomical stud-

ies of monkeys’ sensorimotor networks reveal somatotopic organization and chain-like

specialization. We do not have comparable evidence of selective activation of dedicated

node chains for lexical access/processing. Nonetheless, the parallelism between time-

bound learning, working memory, and sequential processing in both goal-directed motor

planning and lexical processing lends support to the hypothesis that memory structures

and processes in the two domains could be based on identical domain-independent
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principles. The actual level of integration between neuroanatomical networks supporting

action and linguistic processes remains an open empirical question (Barca & Pezzulo,

2012; Glenberg & Gallese, 2011).
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