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Abstract: Over the last decades, a growing body of evidence on the mechanisms
governing lexical storage, access, acquisition and processing has questioned
traditional models of language architecture and word usage based on the hy-
pothesis of a direct correspondence between modular components of grammar
competence (lexicon vs. rules), processing correlates (memory vs. computation)
and neuro-anatomical localizations (prefrontal vs. temporo-parietal perisylvian
areas of the left hemisphere). In the present chapter, we explore the empirical
and theoretical consequences of a distributed, integrative model of the mental
lexicon, whereby words are seen as emergent properties of the functional inter-
action between basic, language-independent processing principles and the lan-
guage-specific nature and organization of the input. From this perspective,
language learning appears to be inextricably related to the way language is
processed and internalized by the speakers, and key to an interdisciplinary un-
derstanding of such a way, in line with Tomaso Poggio’s suggestion that the de-
velopment of a cognitive skill is causally and ontogenetically prior to its
execution (and sits “on top of it”). In particular, we discuss conditions, potential
and prospects of the epistemological continuity between psycholinguistic and
computational modelling of word learning, and illustrate the yet largely untapped
potential of their integration. We use David Marr’s hierarchy to clarify the comple-
mentarity of the two viewpoints. Psycholinguistic models are informative about
how speakers learn to use language (interfacing Marr’s levels 1 and 2). When we
move from the psycholinguistic analysis of the functional operations involved in
language learning to an algorithmic description of how they are computed, com-
puter simulations can help us explore the relation between speakers’ behavior and
general learning principles in more detail. In the end, psycho-computational
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models can be instrumental to bridge Marr’s levels 2 and 3, bringing us closer to
understanding the nature of word knowledge in the brain.

Keywords: mental lexicon, word storage and processing, psycholinguistics,
computational linguistics, connectionist models, discriminative learning

1 Introduction

1.1 Motivation and historical background

Over the past 30 years, theoretical and applied linguistics, cognitive psychol-
ogy and neuroscience have gradually shifted their research focus on lan-
guage knowledge from discipline-specific issues to a broader range of shared
interests, questions and goals. This has been particularly true in the domain
of lexical knowledge since the mid-eighties, when the Parallel Distributed
Processing (PDP) group simulated non-linear developmental trajectories in
child acquisition of the English past tense, moving away from traditional
box-and-arrow models to data-driven computer simulations of emergent phe-
nomena (Rumelhart and McClelland 1986). The trend was concomitant with
other important developments in this area. The dichotomy between data and
programming, reflected in the contrast between static lexical items and dy-
namic rules of grammar (as in Pinker’s “Words and Rules” approach, Pinker
and Prince 1988, 1994) has progressively given way to more integrative views
of the lexicon as a dynamic store of words in context, where basic levels of
language representation (sound, syntax and meaning) are interfaced and co-
organized into context-sensitive “chunks” (Jackendoff 2002; Goldberg 2006;
Booij 2010). Accordingly, human brains must “contain” not only morphologi-
cally simple words, but also inflected and derived forms, compound words,
light verb constructions, collocations, idioms, proverbs, social routine clichés
and all sorts of ready-made, routinized sequences, maximizing processing oppor-
tunities (Libben 2005), augmenting the human working memory capacity
(Baddeley 1986), and having distinct frequency/familiarity effects on processing
(see Baayen et al. 2007; Kuperman et al. 2009; Tremblay and Baayen 2010,
among others).

Probably, the best known assumption in morphological inquiry is the hypoth-
esis that word processing is a form of algebraic calculus, based on the combina-
tion/composition of sublexical building blocks called “morphemes” (e.g. will-, -ing,
-ness, un-), traditionally conceived of as minimal linguistic signs, or irreducible
form-meaning pairs, according to an influential terminology whose roots can be
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traced back to Bloomfield’s work (1933).1 Besides, the content of a morphologically
complex word is assumed to be a function of the meaningful contribution of each
of its internal morphemes. This assumption is part of a very influential view on
language processing as the result of a staged sequence of processing steps and in-
termediate, hierarchically arranged representations: from sounds to syllables, mor-
phemes, words and beyond. At each step, intermediate representations are output
and fed into upper representation levels. In particular, morphemes are credited
with playing an active role in word recognition and production.

These assumptions are usually bundled together. Effects of morpheme bound-
aries on word processing are often coupled with the hypothesis that morphemes
are stored and accessed as independent, atomic linguistic signs, making the lexi-
con a redundancy-free store of simple, irreducible items. In addition, morphemes
are assumed to be involved in processing prior to word identification/production.
In fact, as we will see in the following sections, the involvement of morpheme-like
structures in word processing is not necessarily staged prior to word access, and it
does not imply, per se, further assumptions such as form-meaning pairing and
strong compositionality. Besides, the linguistic status of the morpheme is con-
fronted with a number of theoretical difficulties (Matthews 1991), suggesting that
other relations than just the simple position of a sublexical constituent within an
input word may influence human word knowledge. In particular, many studies in
the framework of Word and Paradigm Morphology have challenged the idea that
morphemes are the atomic units of morphological analysis, suggesting that full
words represent basic building blocks in their own right (Anderson 1992; Aronoff
1994; Beard 1995; Booij 2010; Blevins 2016; Marzi et al. 2020, this volume). This
has led to a radical reconceptualization of the role of morphemes in word process-
ing that received indirect support by work in computational morphology (Pirrelli
2018). As we will see in more detail in the ensuing sections, computer modelling of
morphological processes can shed light on dynamic aspects of language organiza-
tion that would otherwise elude scientific inquiry. For example, the idea that lin-
guistic structure can emerge through self-organization of unstructured input is
nowadays key to our understanding of a number of issues in language acquisition
(Bybee and Hopper 2001; Ellis and Larsen-Freeman 2006; MacWhinney 1999;
MacWhinney and O’Grady 2015). Nonetheless, it had to await the challenging test
of successful computer simulations before it could be given wide currency in the
acquisitional literature. As will be argued more extensively in the following

1 Note, however, that only post-Bloomfieldian accounts translated Bloomfield’s idea that com-
plex lexical forms can be analyzed into simple constituents (morphemes) into the hypothesis
that lexical forms can be reconstructed starting from their independently stored, simple parts
(Blevins 2016; Blevins et al. 2016).
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section, by giving center stage to processing issues, computational morphology
and psycholinguistic approaches to word knowledge have in fact much more in
common than ever acknowledged in the past.

1.2 Computational Linguistics & Psycholinguistics: conditions
for a methodological unification

Computational Linguistics (CL) and Psycholinguistics (PL) share a broad range
of interests and goals. CL is chiefly concerned with computer-based simulations
of how language is understood, produced and learned. Simulations are running
models of language performance, implemented as sets of instructions perform-
ing specific tasks on a computer. They commonly require a precise algorithmic
characterization of aspects of language processing that are often neglected by
language theories, such as the encoding of input data, the structure of output
representations, the basic operations of word segmentation, storage, access, re-
trieval and assembly of intermediate representations (e.g. Clark et al. 2010).

In a similar vein, PL focuses on the cognitive mechanisms and representa-
tions that are known to underlie language processing in the mind or brain of a
speaker. Traditionally, PL uses experiments with human subjects to obtain
measures of language behavior as response variables. In a typical lexical deci-
sion experiment, a speaker is asked to decide, as quickly and accurately as pos-
sible, whether a written form shown on a computer screen for a short time (or,
alternatively, its acoustically rendered pronunciation) is a word in her language
or not. The researcher controls and manipulates the factors that are hypothe-
sized to be involved in the processing task, to measure the extent to which fac-
tor manipulation affects processing performance in terms of response time and
accuracy. Of late, PL more and more often incorporates evidence from neural
experimentation, measuring brain activity more directly as it unfolds during
the task (e.g. Spivey et al. 2012; Marangolo and Papagno 2020, this volume).

In spite of their shared concerns, however, CL and PL have traditionally de-
veloped remarkably different approaches, principles and goals. The impact of in-
formation and communication technologies on language inquiry has spawned a
myriad of successful commercial applications (from speech recognition and
speech synthesis, to machine translation, information retrieval and knowledge
extraction), laying more emphasis on optimizing the computational properties of
parsing algorithms, such as their time and space complexity, and efficiency in
task completion. This technological trend has, however, parceled out language
usage into a fragmentary constellation of small sub-problems and ad hoc soft-
ware solutions, proposed independently of one another.
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Conversely, psycholinguistic models approach language as resulting from
the interaction of both language specific functions (e.g. word co-activation and
competition) and general-purpose cognitive functions (e.g. long-term storage,
sensory-motor integration, rehearsal, executive control). Different global effects
in the operation of low-level interactive processes are investigated as the by--
products of specific levels of input representations (e.g. phonological, morpho-syn-
tactic or semantic levels), giving rise to autonomous, self-organizing effects.
Psycholinguistic models are also aimed to investigate under what conditions lan-
guage processing can be found to perform sub-optimally, with inherent limita-
tions, occasional errors and possible breakdowns of the human language
processor being just as important to understand as processing efficiency and
performance optimization (Berg 2020, this volume; Vulchanova, Saldaña
and Baggio 2020, this volume).

The apparent divergence in the way CL and PL are concerned with issues of
language performance, however, has not precluded growing awareness of their po-
tential for synergy. We already mentioned the important role that seminal work by
Rumelhart, McClelland and the Parallel Distributed Processing (PDP) group played
in the mid-eighties in re-orienting the research focus on language processing away
from algorithmic issues. We will consider the legacy of connectionism and its per-
sisting influence on current models of lexical competence in the ensuing sections
in more detail. Here, we would like to focus very briefly on the implications of the
connectionist revolution for the methodological interaction between CL and PL.

Following the PDP success story, the question of how rules carry out
computations in language, and what types of rules are needed for linguistic com-
putations, stopped to be the exclusive concern of CL. In fact, emphasis on lan-
guage learning slowly shifted the research spotlight on the more fundamental
issue of how a speaker develops the computations and representations used by the
brain from the experience of the natural world. This shift has two important meth-
odological consequences. First, even if we assume (following traditional wisdom)
that sentences are made of phrases, phrases of words and words of morphemes,
and that language processing is an algebraic calculus combining smaller units
into larger ones, the central question that must be addressed is how basic combi-
natorial units are acquired in the first place. Words, phrases and utterances are
not given, but they should be investigated as dynamic processes, emerging from
interrelated patterns of sensory experience, communicative and social interaction
and psychological and neurobiological mechanisms (Elman 2009). Secondly, if
both combinatorial rules and units are acquired, what are the principles underly-
ing (i) rule learning and (ii) the intake/development of input representations dur-
ing learning? In the scientific pursuit for ultimate explanatory mechanisms,
learning principles informing our capacity to adaptively use regularities from
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experience are better candidates than regularities themselves. In the end, we may
ignore what rules consist of and what representations they manipulate, or even
wonder whether rules and representations exist at all (questions that have ani-
mated much of the contemporary debate on language and cognition).
Investigation of the basic neurocognitive functions (e.g., serial perception, storage,
alignment, to mention but a few) that allow for the language input to be processed
and acquired strikes us as an inescapable precondition to understanding what we
know when we know a language. In this connection, learning represents a funda-
mental level of meta-cognition where PL and CL can successfully meet.

1.2.1 Marr’s hierarchy

Tomaso Poggio, one the pioneers of computer vision, has recently suggested
(2010, 2012) that learning should be added to Marr’s classical hierarchy of levels
of understanding of complex processing systems (Marr 1982). The original
Marr’s hierarchy defined three such levels:
(1) the computational level, answering the “semantic” question “what does it

do?”, by providing a precise characterization of what types of functions
and operations are to be computed for a specific cognitive process to be car-
ried out successfully;

(2) the algorithmic level, answering the “syntactic” question “how does it do
it?”, by specifying how computation takes place in terms of detailed equa-
tions and programming instructions;

(3) the implementation level, stating how representations and algorithms are
actually realized at the physical level (e.g. as electronic circuits or patterns
of neurobiological connectivity).2

Poggio argues that learning sits on top of Marr’s computational level, as it al-
lows us to replicate the ability of performing a particular task (e.g. object

2 Computer terminology plays, nowadays, a much more pervasive role than it did in the 70s and
early 80s. Adjectives like “computational” and “implementational”, which are common termino-
logical currency in today’s information sciences, were used by Marr in a different, more literal
sense. In a contemporary adaptation of Marr’s terminology, the “computational level” can argu-
ably be translated into “functional” or “architectural level”. Similarly, his “implementational
level” could more readily be understood as referring to a “(bio-)physical level”. This would avoid,
among other things, the potential confusion arising when we ascribe “computer modelling” (and
CL) to Marr’s “algorithmic level” (rather than to his “computational level”). We decided to stick to
Marr’s original terminology nonetheless, and tried to avoid terminological clashes by using terms
unambiguously in context.
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identification) in machines “even without an understanding of which algo-
rithms and specific constraints are exploited”. This gives a special status to the
study of machine learning and explains much of its influence in various areas
of computer science and in today’s computational neuroscience (Poggio 2010:
367). From our perspective, machine learning and statistical models of lan-
guage have made an essential contribution in breaking a relatively new, inter-
disciplinary middle ground, for CL and PL to meet and profitably interact. But
what is the ultimate goal of this interaction? Is it methodologically well
founded?

Marr introduced his hierarchy to emphasize that explanations at different lev-
els can be investigated largely independently of each other. A language engineer
can automatically process large quantities of text data, disregarding how difficult
they are for a human speaker to process. A neuroscientist can describe the bio-
physics of oscillations in the neural activity of cortical areas, and ignore how these
oscillations can possibly map onto higher-level processing functions. However,
full understanding of a complex system requires tight inter-level interaction. In the
spirit of computational neuroscience, one must eventually understand what kind
of computations are performed by oscillations, and what algorithm controls them.

We agree with Poggio (2012) that it is time to clarify the potential for be-
tween-level interaction in Marr’s hierarchy, and investigate the methodological
conditions for their appropriate integration. It has been observed (Alvargonzáles
2011) that interdisciplinary convergence requires operational, material continuity
between the objects of investigation of neighboring scientific fields. Trivially,
using the same battery of formal/mathematical methods and functions to model
as diverse empirical domains as mechanics, economy or epidemiology, does not
make the boundaries between these domains any closer. Only if we can clarify
the role of formal psycholinguistic models of language processing and computer
simulations along Marr’s hierarchy, we can establish a material common ground
between PL and CL, and, ultimately, assess the potential for their unification.

1.2.2 Complementarity and integration

In a classical psycholinguistic experiment, scholars aim to understand more of the
architecture and functioning principles of the human language processor by inves-
tigating human language behavior in highly controlled conditions. From this
standpoint, the human processor represents a “black box” (the research explanan-
dum), whose internal organization and principles are inferred through observation
of overt behavioral variables (the explanans). The approach of psycholinguistic
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inquiry can thus be described in terms of abductive inference, whereby underlying
causes are studied and understood by analyzing their overt effects.3

Conversely, experiments conducted by implementing and running com-
puter simulations of a specific language task can be used to understand more
of the human processing behavior by testing the mechanisms that are assumed
to be the cause of this behavior. Suppose that we want to model how speakers
learn to process words as a dynamic process of optimal resolution of multiple,
parallel (and possibly conflicting) constraints on complex lexical structures
(Seidenberg and MacDonald 1999). In this case, a parallel processing architec-
ture represents our explanans, designed and implemented to combine top-
down expectations (based on past input evidence) with the on-line bottom-up
requirements of current input stimuli. If successful, the simulator should be
able to replicate aspects of human language behavior.

Such a methodological complementarity between CL and PL enables us to es-
tablish an effective continuity between observations and hypotheses. Abductively
inferred functions in the human processor can be simulated through a piece of pro-
gramming code replicating human results on a comparable set of test data. But rep-
licating results is of little explanatory power unless we understand why and how
simulations are successful (Marzi and Pirrelli 2015). The real insights often come
from examining the way problems are solved algorithmically, how they are affected
by changes in data distribution or parameter setting, and by observing the interac-
tion between these changes and principles that were not specified by the original
psycholinguistic model, but had to be implemented for the computational model
to carry out a specific task. We can then check these new insights back on human
subjects, and make abductive reasoning and computer modelling interact for our
level of knowledge to scale up along Marr’s hierarchy. Ultimately, simulations
should be able to incorporate requirements coming from Marr’s implementational
level, and make processing mechanisms match what is known about the neuro-
physiological principles supporting language processing. From this perspective,
computational modelling cannot only provide a framework for psycholinguistic
theories to be tested, but can also bridge the gap between high-level psycholinguis-
tic and cognitive functions, and low-level interactive brain processes.

3 Abductive inference, also known as “inference to the best explanation”, must be distinguished
from both deductive and inductive inference. Deductive reasoning allows deriving b from a only
when b is a formal logical consequence of a. Inductive reasoning allows inferring b from a, by
way of a logically unnecessary generalization: if one has experience of white swans only, one can
(wrongly) believe that all swans are white. Abductive reasoning allows inferring a as a possible
explanation of b. If you glance an apple falling from a tree, you can abduce (rather uneconomi-
cally) that someone hidden in the tree leaves is dropping apples to the ground.
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To sum up, by describing and interpreting the behavior of a speaker per-
forming a certain task, psycholinguistic models help us bridge the gap between
Marr’s computational (i.e. “what the speaker does”) and algorithmic level (i.e.
“how she does it”). On the other hand, by simulating how the same problems
are solved by a computer, machine learning models can help us test psycholin-
guistic models algorithmically. If algorithmic results prove to match human re-
sults, and if the implemented mechanisms can be mapped onto high-level
aspects of human behavior to make independent predictions about it, progress
is made. Finally, if algorithmic models are implemented to incorporate neuro-
biologically grounded processing principles, we make progress in filling the
gap between Marr’s algorithmic and implementation levels.

In this section, we discussed the methodological conditions for a fruitful in-
teraction between PL and CL approaches to language processing, in line with
Marr’s original idea that a full scientific theory of a complex processing system
requires understanding its computational, algorithmic and biophysical levels
and making predictions at all such levels. In the following section, we will selec-
tively overview a few psycholinguistic and algorithmic models of the mental lexi-
con, with a view to exploring concrete prospects for methodological unification
in the context of language learning. As a final methodological remark, it is impor-
tant to be clear on where we agree and where we disagree with Poggio’s claims.
We think that Poggio is right in emphasizing that, from an ontogenetic perspec-
tive, learning how to execute a cognitive task is temporally and causally prior to
task execution. Besides, understanding how the task is learned is inextricably re-
lated to the way the task is executed, and is key to understanding such a way.
However, this hierarchy of (meta-)cognitive levels is concerned with their ontoge-
netic and possibly phylogenetic relationships (e.g. in connection with evolution-
ary changes of biological processing systems), and has little to do with Marr’s
hierarchy. In our view (unlike Poggio’s), learning does not sit on top of Marr’s
levels, but can better be analyzed and understood through each of them.

2 Psycho-computational models of the mental
lexicon: A selective overview

2.1 Morpheme-based and a-morphous models

For decades, issues of lexical processing, access and organization have been in-
vestigated by focusing on aspects of the internal structure of complex words
(Bloomfield 1933; Bloch 1947; Chomsky and Halle 1968; Lieber 1980; Selkirk 1984).
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According to the classical generative view, words are made up out of mor-
phemes. A repository of sublexical constituents accounts for the ways morp-
hologically complex words are mutually related in the speaker’s’ mind. For
example, the theory of speech production developed by Levelt et al. (1999) as-
sumes that only irreducible forms are stored in the lexicon as separate entries,
thus providing a psycholinguistic model of this view.

The generative approach goes back to an “Item and Arrangement” view of
morphological competence (Hockett 1954), and was influenced by the dominant
computer metaphor of the 50s, equating the human language processor to a
processing device coupled with highly efficient retrieval procedures (Baayen
2007). Since morphemes were understood as sign-based units, which capture
the minimal patterns of recurrence of form and meaning in our vocabulary,
they were conceived of as potential access units of the mental lexicon. These
assumptions boil down to what Blevins (2006) termed a constructive approach
to morphological theory, where roots/stems (and possibly affixes) are the basic
building blocks of morphological competence, in a largely redundancy-free lex-
icon. This is contrasted with an abstractive approach, according to which full
word forms are the building blocks of morphological competence, and recur-
rent sublexical parts define abstractions over full forms.

Since early work in the lexicalist framework (Halle 1973; Jackendoff 1975;
Aronoff 1976; Scalise 1984), it was clear that morphological rules might not be
heavily involved in on-line word processing (see Fábregas and Penke 2020, this
volume). Besides, despite its attractiveness and simplicity, the constructive
idea that morphemes play a fundamental role as representational units in the
mental lexicon has met a number of theoretical, computational and psycholin-
guistic difficulties (Blevins 2016). In the psycholinguistic literature, this aware-
ness led to a sweeping reappraisal of the role of morphemes in language usage,
and prompted a flourishing number of diverse theoretical perspectives on the
mental lexicon.

Psycholinguistic models in the ‘70s (Becker 1980; Rubenstein et al. 1970,
1971; Snodgrass and Jarvella 1972) investigated the idea that lexical units com-
pete for recognition. Token frequency of single input forms, type frequency of
related forms (size of morpho-lexical families) and their relative probabilistic
distribution, were shown to affect the way lexical units are matched against an
input stimulus, with high-frequency units being checked earlier for matching
than low-frequency units are. In line with this evidence, it was suggested that
morpheme-based representations do not provide an alternative to full word list-
ing in lexical organization, but are rather complementary access units to whole
words. We can mention at least four different views of the role of sublexical
units in the morphological lexicon:
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(i) as permanent access units to full words, speeding up lexical access/re-
trieval (Taft and Forster 1975; Taft 1994, 2004);

(ii) as fallback processing routes, in case of failure to access fully-inflected lex-
ical entries (Caramazza et al. 1988);

(iii) as pre-lexical processing routes, running in parallel with full-word access
routes, and competing with the latter in a race for lexical access (Schreuder
and Baayen 1995);

(iv) as post-lexical meaningful formal cores reflecting inter-word relationships
in so-called morphological families (Giraudo and Grainger 2000; Grainger
et al. 1991).

As a radical departure from a morpheme-centered view of the mental lexicon,
other lexical models were put forward that appeared to dispense altogether with
the idea that lexical access is mediated by sublexical constituents. Morton’s
(1969, 1970, 1979) original logogen model and its updates were apparently influ-
enced by feature detection models of visual object recognition, based on the par-
allel activation of competing “demons” (neurons), dedicated to perform processing
of specific input features, and “yelling” for primacy (Selfridge 1959). Morton’s de-
mons, named “logogens”, were conceived of as specialized word receptors, ac-
cumulating sensory properties of linguistic stimuli and outputting their own
response (e.g. a single word form) when accumulated properties (e.g. seman-
tic, visual or acoustic features) rose above a threshold value.

The Parallel Distributed Processing (or PDP) way to connectionism in the
eighties (Rumelhart et al. 1986) followed in Morton’s footsteps, to popularize
the idea that the lexical processor consists of a network of parallel processing
nodes (functionally equivalent to neuron clusters) selectively firing in response
to sensory stimuli (McClelland and Elman 1986; Norris 1994; Rumelhart and
McClelland 1986). Accordingly, word production was modelled as a mapping
function between two levels of representation, consisting of the input and out-
put layers of processing nodes in a multi-layered neural network: namely, the
level of morpho-lexical content (consisting of lexical meanings and morpho-
syntactic features), and the level of surface form (strings of letters or sounds).
For example, given an appropriate encoding of the base form go and the feature
PAST on the input layer, this representation is mapped onto the string went on
the output layer.

The PDP model explicitly implemented an assumption that was common to
most psycholinguistic models of the lexicon; namely the idea that, when a word
is input, multiple access units are activated in parallel. Levels of co-activation de-
pend on the degree of fit between the incoming input and each lexical unit
represented in the lexicon, and is modulated by the prior probability of input
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representations, estimated with their relative frequency of occurrence. Word
recognition and production are guided by competition among similar repre-
sentations (or lexical neighbors), whose influence on the process is a function
of their number (or neighborhood density), their independent token frequen-
cies, and their uniqueness recognition points in input/output words (Marslen-
Wilson 1984).4

Each of these principles is quite general, and allows for considerable cross-
model variation (Dahan and Magnuson 2006). For example, frequency can di-
rectly affect the activation of processing units by modulating either the units’
threshold for response (as in Morton’s logogen model), or the units’ resting
activation level (as in Marslen-Wilson’s cohort model), or the strength of
connections between sublexical and lexical representations (MacKay 1982).
Alternatively, frequency can act as a post-activation bias, thus influencing
lexical selection, as in the NAM model (Luce 1986; Luce and Pisoni 1998).
Besides, theories may differ in their similarity metrics and/or bottom-up ac-
tivation mechanisms (which determine degree of fit), information flow (e.g.
only bottom-up or top-down as well), and the nature of the competition mech-
anisms they assume (e.g. decision rule, lateral inhibition, or interference).

Differences and similarities notwithstanding, the PDP connectionism brought
to the fore a factor missing in all previous models: the temporal dynamic of learn-
ing. In fact, non-connectionist models simply assumed the existence of a represen-
tational level made up out of access units, and an independent access procedure,
mapping the input signal onto lexical representations. However, very little was
said about how representations develop in the first place: how do children come to
the decision of storing an irregular form as an unsegmented access unit, and a reg-
ular form as consisting of distinct access units? Even for those approaches where
the decision does not have to be yes-or-no (since both hypotheses can be enter-
tained at the same time, as in race models of lexical access), questions about how
this is implemented (e.g., how does a child come up with the appropriate segmen-
tation of a word form into sub-lexical units?) are left open.

In classical multi-layered perceptrons, internalized representations develop
as the result of learning. The mapping of an input full form onto its morpholog-
ical constituents is a continuous function of the statistical regularities in the

4 A uniqueness point (or UP) refers to the word-internal point (e.g. a sound, or a letter) at
which an input form is uniquely identified among all its morphologically unrelated competi-
tors (e.g. k in walk compared with wall). More recently, Balling and Baayen (2008) define
a second uniqueness point, or Complex Uniqueness Point (CUP), where morphologically re-
lated competitors become incompatible with the input word (e.g. i in walking compared with
walk, walks, walked etc.).
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form and meaning of different words. Since form-meaning mapping is predicted
to be a graded phenomenon, perception of morphological boundaries by a con-
nectionist network may vary as a result of the probabilistic support the bound-
aries receive from frequency distributions of acquired exemplars (e.g., Hay
and Baayen 2005; Plaut and Gonnerman 2000; Rueckl and Raveh 1999). This
mechanism is key to what is arguably the most important legacy of connection-
ism for models of the mental lexicon: both regular and irregular words are proc-
essed by the same underlying mechanism and supported by the same memory
resources. Pace Pinker and Ullman (2002), perception of morphological struc-
ture is not the by-product of the design of the human word processor, purport-
edly segregating exceptions from rules. Rather, it is an emergent property of
the dynamic self-organization of lexical representations, contingent on the
processing history of past input word forms.

However, as correctly observed by Baayen (2007), classical connectionist
simulations model word acquisition as the mapping of a base input form onto
its inflected output form (e.g. go → went). This protocol is in fact compatible
with the view of a redundancy-free lexicon, and seems to adhere to a deri-
vational approach to morphological competence, reminiscent of classical gener-
ative theories. Nonetheless, since network-internal representations (encoded in
hidden layers of processing nodes) are dependent on the temporal dynamics of
input-output mapping steps, connectionist principles are conducive to the idea
that sublexical constituents dynamically emerge from the lexical store. Emergence
of morphological structure is the result of morphologically complex words being
redundantly memorized and mutually related as full forms.

2.2 Morphological emergence and paradigm-based models

The general idea that word structure emerges from lexical self-organization al-
lows for considerable variation in matters of detail. According to Bybee (1995),
stored words presenting overlapping parts with shared meaning are mutually re-
lated through lexical connections. Connection strength correlates positively with
the number of related words (their family size) and negatively with their token
frequency (see Bybee and McClelland 2005 for a more connectionist rendering
of these ideas). Burzio (1998) interprets lexical connections as global lexical en-
tailments, which may redundantly specify multiple surface bases. In line with
this view, Word and Paradigm Morphology (Matthews 1991; Blevins 2006, 2016)
conceives of mastering the morphology of a language as the acquisition of an in-
creasing number of paradigmatic constraints on how paradigm cells are filled in
(or cell-filling problem: Ackerman et al. 2009; Cardillo et al. 2018; Finkel and
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Stump 2007; Pirrelli and Battista 2000; Pirrelli and Yvon 1999). What all these
approaches have in common is the assumption that full word forms are the
building blocks of morphological competence, and recurrent sublexical parts de-
fine abstractions over full forms (Blevins 2006).

The extent to which abstracted sublexical parts play a role in word process-
ing remains a highly debated point in the psycholinguistic literature (see
Schmidtke et al. 2017, for a recent, concise overview). Nonetheless, there seems
to be a general consensus on the idea that the organization of items into mor-
phologically natural classes (be they inflectional paradigms, inflectional clas-
ses, derivational families or compound families) has a direct influence on
morphological processing, and that surface word relations constitute a funda-
mental domain of morphological competence. Of late, the emphasis on lexical
families prompted a growing interest in information-theoretic measures of their
degree of complexity. Once more, the connection between self-organization of
word forms into morphological families and Shannon’s information theory
(Shannon 1948) is mainly provided by the relation between lexical knowledge
and learning. Due to the Zipfian distribution of word forms in the speaker’s
input, inflectional paradigms happen to be attested only partially also for high-
frequency lexemes (Blevins et al. 2017). Speakers must then be able to general-
ize available knowledge, and infer the inflectional class to which a partially
attested paradigm belongs, for non-attested cells to be filled in accordingly.

Inferring non-attested forms of a paradigm on the basis of a few attested
forms only thus requires that some word forms be diagnostic for inflectional
class. Some forms can be more diagnostic than others, but it is often the case
that no single form exists in a paradigm from which all other forms of the same
paradigm can be inferred. This is not only true of irregular verb paradigms, but
also of regular ones, where some inflected forms may neutralize class-membership
diacritics (e.g. theme vowels for verb inflectional classes, see Albright 2002).
Different forms can be instrumental for filling in specific subsets of paradigm cells
(irrespective of their degree of morphological or phonological predictability), and
more forms can be interchangeably used to predict the same subclass. On the one
hand, this strategy calls for more evidence to be stored (so-called exemplary diag-
nostic forms, also referred to as “principal parts” in classical grammars). On the
other hand, a speaker does not have to wait for one specific form (a “base” form)
to be input, or abstract away an appropriate representation from available evi-
dence. More forms can be used interchangeably for class assignment.
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2.3 The “disappearing” lexicon

Paradigm-based approaches prompt a significant shift of emphasis away from
traditional computational work on morphology, chiefly based on finite state
technology and concerned with cognitively neutral, rule-like representations
and analyses (Corbett and Fraser 1993; Karttunen 2003; Pirrelli 2018). A way to
understand the difference between classical morpheme-based approaches and
paradigm-based approaches to morphology is by looking at analogical propor-
tions between paradigmatically-related word forms like the following:

(drink, PRES) : (drank, PAST) :: (sink, PRES) : (sank, PAST)

Given some computational constraints, one can infer any of the forms in the
proportion above on the basis of the remaining three forms (Pirrelli and Yvon
1999). To illustrate, from the relation between drink and drank, one can infer
that, by changing i into a, PRES is turned into PAST. Given (drink, PRES),
(drank, PAST) and (sink, PRES), we can thus infer (sank, PAST). Note that, for a
proportion to apply consistently, proportional relations must obtain concur-
rently and independently within each representation level (in our example, lexi-
cal form and grammatical content). Nothing explicit is stated about inter-level
relations, i.e. about what substring in drink is associated with PRES. We could
have stated the formal relationship between drink and drank as a (redundant)
change of ink into ank, and the same inference would obtain. In fact, by the
principle of contrast (Clark 1987, 1990), any formal difference can be used to
mark a grammatical opposition as long as it obtains within one minimal pair of
paradigmatically-related forms. This principle solves many of the paradoxes in
the traditional notion of morpheme as a minimal linguistic sign: e.g. mor-
phemes with no meanings (or empty morphemes), meanings with no mor-
phemes (or zero morphemes), bracketing paradoxes etc.

It is noteworthy that the time-honored principle of contrast in linguistics is
fully in line with principles of discriminative learning, whose roots can be traced
back to philosophical pragmatism (particularly James 1907, 1909; and later
Wittgenstein 1953; Quine 1960), functional psychology (James 1890) and behav-
iorism (Tolman 1932, 1951; Osgood 1946, 1949, 1966; Skinner 1953, 1957).
Discriminative principles received their formal and mathematical modeling in
the work of Rescorla and Wagner on classical conditioning, also known as error-
driven learning (Rescorla 1988; Rescorla and Wagner 1972). More recently, work
of Ramscar and collaborators (Ramscar and Yarlett 2007; Ramscar et al. 2010)
and Ellis (2006a, also see Ellis and Larsen-Freeman 2006) laid the foundations of
error-driven learning in the context of language learning. Baayen et al. (2011)
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and Milin, Feldman et al. (2017) provide the discriminative approach with its
computational platform, dubbed Naive Discrimination Learning (NDL).

Unlike strongly compositional and associative approaches to learning, error-
driven or discriminative learning assumes that learning “results from exposure
to relations among events in the environment”, and, as such, it is “a primary
means by which the organism represents the structure of its world” (Rescorla
1988: 152). Learning proceeds not by associating co-occurring cues and outcomes,
but by discriminating between multiple cues that are constantly in competition
for their predictive value for a given outcome. Furthermore, cues are not fixed in
advance, but they emerge dynamically within an environment, shaped up by
adaptive pressures. According to this view, human lexical information is never
stable, time- or context-independent. Its content is continuously updated and re-
shaped as a function of when, why and how often it is accessed and processed,
with activation spreading to neighboring patterns of connectivity. Such flowing
activation states are more reminiscent of the wave/particle duality in quantum
physics (Libben 2016) or the inherently adaptive, self-organizing behavior of bio-
logical dynamic systems (Beckner et al. 2009; Larsen-Freeman and Cameron
2008) than ever thought in the past. From this perspective, the very notion of the
mental lexicon is challenged; it may represent, at best, a metaphorical device or
a convenient terminological shortcut (Elman 2009).

We saw that, from a theoretical linguistic perspective, the discriminative
view fits in very well with Word and Paradigm Morphology (Blevins 2016), ac-
cording to which morphemes and words are set-theoretic constructs. In a more
computational perspective, it appears to support the view that storage and proc-
essing are not functionally and physically independent components of an infor-
mation processing architecture (as with familiar desktop computers). Rather,
they are better conceived of as two interdependent long-term and short-term dy-
namics of the same underlying process: learning.

Ultimately, we believe that understanding more of the far-reaching implica-
tions of (human) learning and adaptive behavior pushes us into a profound re-
assessment of traditional linguistic notions and processing requirements. This
calls for more advanced computer models of human language behavior. In this
section, we reviewed converging evidence of the role of morphological families
and paradigmatic relations in the developmental course of lexical acquisition.
The evidence bears witness to a fundamental interdependency between mecha-
nisms of lexical activation/competition and effects of lexical token frequency,
paradigm frequency, and paradigm regularity in word processing and learning.
However, there have been comparatively few attempts to simulate this interdepen-
dency algorithmically. Most existing computational models of word recognition
and production (Chen and Mirman 2012; Gaskell and Marslen-Wilson 2002;
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Levelt et al. 1999; McClelland and Elman 1986; Norris, McQueen and Cutler
1995; among others) either focus on processing issues, by analyzing how input
patterns can be mapped onto stored exemplars during processing; or focus on stor-
age, by entertaining different hypotheses concerning the nature of stored represen-
tations (e.g. Henson 1998; Davis 2010, among others). Much less work is devoted
to more “integrative” (neuro)computational accounts, where (i) “memory units
that are repeatedly activated in processing an input word are the same units re-
sponsible for its stored representation” (Marzi and Pirrelli 2015: 495), and (ii)
“memory units are made develop dynamically as the result of learning” (Marzi
et al. 2016: 80). Truly integrative models would lead to an effective implementation
and a better understanding of the dynamic interaction between processing and
storage, and make room for a careful analysis of the empirical consequences of
such a mutual implication on realistically distributed lexical data.

In the ensuing sections, we investigate what can be learned about the im-
pact of principles of discriminative learning on lexical acquisition, access and
production, by running computer simulations of models of dynamic lexical stor-
age. We start with a general introduction of the Naive Discriminative Learning
framework, its mathematical underpinnings and general philosophy, moving
from the basics to advanced applications. Then, we investigate the time-bound
dynamics of co-activation and competition in the acquisition of families of in-
flected forms, with a view to providing a unitary account of paradigm-based lexi-
cal acquisition and effects of neighbor families on lexical processing. This will be
done using a family of recurrent neural networks known as Temporal Self-
Organizing Maps. We will show that self-organizing memories provide a biologi-
cally inspired explanatory framework accounting for the interconnection between
Word and Paradigm Morphology and principles of Discriminative Learning.

3 Computer models of discriminative learning

3.1 Naive Discriminative Learning

Naive Discriminative Learning (NDL) represents a computational modelling ap-
proach to language processing, providing theoretical and methodological ground-
ing of research on diverse language phenomena. The NDL computational model
itself implements the simplest possible error-driven learning rule, originally pro-
posed by Rescorla and Wagner (1972), which since then has been shown to make
powerful predictions for a range of phenomena in language learning and lan-
guage comprehension (Ellis 2006a, 2006b; Ramscar, Dye and McCauley 2013;
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Ramscar and Yarlett 2007; Ramscar et al. 2010). The first study to apply dis-
crimination learning to predict reaction times by training a network on large
corpora is Baayen, Milin et al. (2011), and the term NDL was coined and first
used in this study.

3.1.1 NDL – The Basics

The Rescorla-Wagner learning rule updates the weights on connections from
input features (henceforth cues) to output classes (henceforth outcomes) in a
simple two-layer network. Outcomes are word-like units that are labelled “lex-
omes” in the NDL terminology (e.g. the unit something), cues are typically letter
bigrams, trigrams or even word forms (like #so, som, ome, met, eth, thi, hin, ing,
ng# for the word something; with the ‘#’ symbol replacing start-of-word and
end-of-word spaces). The relationship between cues and outcomes is incremen-
tal, and develops in discrete time steps. Presence of a cue Ci in a given learning
event Et taking place at time t is indicated by PRESENT Ci, tð Þ, and presence of
an outcome Oj in Et by PRESENT OJ , tð Þ. The weight wt

ij is defined on the connec-
tion between a given cue Ci and specific outcome Oj at time t, and at the subse-
quent timestep wt + 1

ij this weight is defined as:

wt + 1
ij =wt

ij +Δwt
ij (1)

where the change in weight Δwt
ij is specified as:

Δwt
ij =

=0 ; if PRESENTðCi, tÞ is false

= ηi λj −
X

present Ck , tð Þ
wkj

0
@

1
A; if PRESENTðCi, tÞ is true&PRESENTðOj, tÞ is true

= ηi 0−
X

present Ck , tð Þ
wkj

0
@

1
A; if PRESENTðCi, tÞ is true&PRESENTðOj, tÞ is false

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

(2)

Weights on connections from cues that are absent in the input are left un-
changed. For cues that are present in the input, the weights to a given outcome
are updated, depending on whether the outcome was correctly predicted. The
prediction strength or activation a for an outcome is defined as the sum of the
weights on the connections from the cues in the input to the outcome. If the out-
come is present in a learning event, together with the cues, then the weights are
increased by a proportion η of the difference between the maximum prediction
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strength (λ, set at 1 in NDL simulations) and a. The proportionality constant η
defines the learning rate of the model. Thus, the adjustment to the weights when
the outcome is indeed present is η λ− að Þ. When the outcome is not present, the
weights are decreased by η 0− að Þ. For networks trained on large corpora, setting
η to 0.001 appears optimal. In general, learning rate η should be set to a small
value (commonly between 0.1 and 0.001) to allow for learning to be incremental
(Rescorla and Wagner 1972; Blough 1975; Baayen et al. 2011; Ghirlanda 2005;
Ghirlanda et al. 2017). The learning rate η is the only free parameter of the NDL
implementation of the Rescorla-Wagner learning rule.5

3.1.2 Current results

Naive Discriminative Learning has been used successfully to model the results
of a range of experiments. Baayen, Milin et al. (2011), Pham and Baayen (2015),
and Milin, Feldman et al. (2017) investigated primed and unprimed lexical deci-
sion. Arnold et al. (2017) developed a model of spoken word recognition using
input cues derived from the speech signal. Linke et al. (2017) modeled (sup-
posed) lexical learning in baboons. Geeraert et al. (2017) used NDL to clarify
idiom variation; and Ramscar et al. (2014, 2017) used NDL to study the conse-
quences of the accumulation of knowledge over a lifetime.

The 2011 study applying Naive Discriminative Learning to lexical decision
latencies used cues consisting of individual letters and letter pairs. It has since
been shown that letter triplets provide better cues for modelling reading. In the
same paper, outcomes were conceptualized as “semantic units”. In subsequent

5 Implementations of NDL are available for R (package ndl, Arppe et al. 2015) and as a Python
library (pyndl: Weitz et al. 2017). The first study to explore the potential of discrimination
learning for understanding reaction times (Baayen, Milin et al. 2011) did not make use of the
Rescorla-Wagner equations themselves, but instead used the equations developed by Danks
(2003). Danks developed equations for estimating the weights under the assumption that the
system has reached a state of equilibrium in which no further learning takes place. Although
the option of using Danks’ equilibrium equations is implemented in the available software
packages, subsequent research strongly suggests it is preferable to use the original equations
and apply them step by step to the sequence of learning events. NDL networks appear quite
sensitive to the order in which sets of cues and outcomes are presented for learning. Hence, if
order information is available (as when models are trained on corpora), it is advisable to let this
order co-determine learning. The available software implements optimized algorithms that can
utilize multiple cores in parallel to speed up the incremental updating of the weights. For large
data sets, estimating the weights is actually accomplished substantially more quickly for ‘incre-
mental’ learning as compared to the estimation method based on the Danks equations.
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work, the nature of these units was clarified: they are now conceptualized as
pointers to locations in a multidimensional semantic space. To avoid confusing
these pointers with contentful lexical representations, we labelled these pointers
‘lexomes’ (c.f., Baayen, Shaoul et al. 2016; Milin, Divjak, and Baayen 2017; Milin,
Feldman et al. 2017). Lexomes thus link lexical contrasts in form to lexical con-
trasts in semantic space. Figure 1 clarifies the role of this theoretical construct in
the model. This figure simultaneously represents three discrimination networks,
each of which is trained independently. The three networks have all been used
for successfully predicting data from experimental studies.

Of the three networks in Figure 1, the first one represents bottom-up associations
from perceptual input cues (here letter trigrams) to lexomes. This network is re-
ferred to as a ‘Grapheme-to-Lexome network’ (or G2L-network). Milin, Feldman
et al. (2017) trained such a network on utterances from a 1.1 billion word corpus of
English subtitles (Tiedemann 2012), using letter trigrams such as #sa, sai, ail and
il#, or #he and he#, to lexomes such as sail and he. Three measures that can be
derived from such G2L networks have been found to be predictive for experimental
measures gauging lexical processing costs. First, the Activation of a lexome is de-
fined as the sum of the weights on the connections from the cues in the input to
that lexome. Second, the Prior availability of a lexome is estimated by the L1-norm
of the weights on the connections from all cues to that lexome.6 Whereas the

Network 1 #sa sai ... ... ail il#

hesaidsailfailhelpers

Human
subject

Emotion

Past

Network 2

Network 3 Future

Figure 1: NDL network layout obtained with the iterative application of Rescorla-Wagner rule,
for the lexomes fail, sail, and said. Red arrows represent positive associations, while blue
arrows represent negative associations. Arrow width reflects the absolute magnitude of the
weights on the connections. Networks are trained independently of each other.

6 The L1-norm of a numeric vector is the sum of its absolute values. Like the Euclidean dis-
tance (the L2-norm), the L1-norm is a distance measure. It is the distance between two points
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activation measure, given the network, is determined by the input, the prior avail-
ability is a systemic measure that is independent from the input and is determined
by the network only. Prior availability can be understood as a measure of network
entrenchment, and hence is reminiscent of the priors in Bayesian models of word
recognition (Norris 1994, 2006; Norris and McQueen 2008). The activation
Diversity, finally, is the L1-norm of the activations of all lexomes generated by the
input. It gauges the extent to which other lexomes are co-activated by the input.
All three measures have been found to be good predictors for a number of experi-
mental tasks across languages (cf. Baayen et al. 2011; Baayen, Milin, and Ramscar
2016 for visual lexical decision; Milin, Divjak et al. 2017 for self-paced reading in
Russian, Hendrix, Bolger, and Baayen 2017 for ERPs, and Arnold et al. 2017 for spo-
ken word identification).

The second learning network, partially represented in the middle row in
Figure 1, has lexomes both as input cues and as output outcomes. In Figure 1,
only two connections are indicated: the connection from the lexome helpers
(cue) to the lexome fail (outcome), and from the cue said to the outcome he.
Weights estimated from the corpus of English subtitles suggest that these two
connections have strong and positive association strengths. From this ‘Lexome-
to-Lexome network’ (L2L-network), several further measures can be derived. In
parallel to the Diversity and outcome Prior availability based on a G2L network,
an L2L Diversity of activations as well as an L2L Prior availability can be de-
rived, again using L1-norms. Both measures are strong predictors of lexical
processing costs, alongside the G2L measures.

L2L networks define semantic vector spaces (cf. Baayen, Milin et al. 2016;
Milin, Feldman et al. 2017; see Marelli and Baroni 2015; Acquaviva et al. 2020,
this volume for an overview of distributed semantic models). The rows of the L2L
weight matrix that defines the L2L network constitute the semantic vectors of the
model. Importantly, it is these semantic vectors that the lexome units in the G2L
and L2L networks identify (or “point” to). From the cosine similarity matrix of
the L2L row vectors, two further measures have been derived and tested against
empirical data: a lexome’s Semantic Density and a lexome’s Semantic Typicality.
A lexome’s Semantic Density is defined as the number of all lexomes that have a
very high cosine similarity with the target lexome. Similarly, a lexome’s
Semantic Typicality is defined as the cosine similarity of that lexome’s semantic
vector and the average semantic vector (see also Marelli and Baroni 2015; Shaoul

on a grid when one can move only in the direction of the axes. Thus, whereas the L2-norm of
the point (3,–4) is 5, the L1-norm is 7.
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and Westbury 2010). Milin, Feldman et al. (2017) observe inhibition from seman-
tic density and facilitation from semantic typicality for lexical decision latencies.

Milin, Divjak et al. (2017) introduced a third NDL network with content lex-
omes as outcomes, and as cues what we call ‘experiential’ lexomes. This third
network was labeled the BP2L network. Relying on the Behavioural Profiles de-
veloped by Divjak & Gries (2006) and later publications, it indexes dimensions
of experience, including those that are marked grammatically, such as aspect,
tense, mood and number. The authors show that the activations that lexomes
of ‘try’- verbs receive from such grammatical lexomes are predictive for reading
latencies obtained in self-paced sentence reading in Russian. Statistical analy-
ses also revealed that participants optimized their responses in the course of
the experiment: the activations had an inhibitory effect on reading latencies at
the beginning of the experiment, that later reversed into facilitation. The results
from the Milin, Divjak et al. (2017) study are especially interesting as they show
that the linguistic profiling of words or constructions (Divjak and Gries 2006;
see also Bresnan et al. 2005) can be integrated within a computationally exact
approach to learning to yield novel insights into language processing.

Baayen, Milin, and Ramscar (2016), for example, demonstrated and dis-
cussed how empirically well-established yet theoretically neglected frequency ef-
fects emerge naturally from discriminative learning. The Activation and Prior
availability measure are strongly correlated with frequency of occurrence in the
corpus on which the network is trained. They can be viewed as measures of fre-
quency that have been molded by discriminative learning. At the same time, in-
teractive activation models account for frequency effects by coding frequency of
use into resting activation levels, and Bayesian models build them in by means
of priors. Both approaches in effect assume some kind of counter in the head.

3.1.3 Recent developments

In principle, any activation-based computer model of utterance comprehension
should be able to discriminate, based on levels of activation, between the in-
tended words actually found in an input utterance and the tens of thousands of
other irrelevant words that are potentially available. For example, upon being
exposed to Bill ate the apple pie, the model should perceive, as the most highly
activated units, the individual forms corresponding to the following lexical and
grammatical categories: BILL, EAT_PAST and DEF_APPLEPIE. In practice, the
two individual forms apple and pie may be the most highly activated units, and
may (wrongly) be perceived as associated with APPLE and PIE respectively,
rather than with APPLEPIE as one ‘meaning’ contrast. In the context of Bill ate
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the apple pie this would be a case of misclassification of input data. The correct
interpretation of an utterance thus requires that all and only its intended word
units are classified correctly, by discarding all other irrelevant units that may
possibly get activated.

NDL models trained on large corpora may not always achieve this. This is
perhaps unsurprising, as a 10 million word corpus such as the TASA (Landauer,
Foltz, and Laham 1998) can easily contain 50,000 words that occur at least
twice. Hence, classification of these 50,000 words, given their large number and
rare occurrence, is a formidable task. In that sense, if these words would be
among the first 300 most highly activated candidates, such result would be re-
spectable. Nevertheless, human performance is typically more precise. Baayen
et al. (2017) show that classification accuracy can be improved considerably, to
human-like levels, by working with coupled error-driven networks. The weights
of the two networks are estimated independently, i.e. the same error is ‘injected’
twice. The first network takes sublexical orthographic or auditory features as
input cues, and has lexomes as outcomes. The second network takes as input the
output of the first network, i.e. a vector of activations over all lexomes. The out-
comes of the second network are again lexomes. The second network thus imple-
ments a second try, taking the results from the first network and attempting to
predict once again the lexomes that are actually present in the learning event.

We illustrate the coupled networks by means of a simple example, which
we also use to lay out the novel way in which the discriminative perspective
addresses lexical access. Table 1 lists 10 sentences together with their (ran-
domly generated) frequency of occurrence and a list of the lexomes occurring
in each sentence. This list is not intended to be comprehensive, but to illustrate
some modelling strategies while keeping the complexity of the example low.

Table 1: Sentences, selected lexomes in the message, and frequency of occurrence, totaling 771.

no. Sentence Lexomes (lexical meanings) Frequency

 Mary passed away MARY DIE PAST 

 Bill kicked the ball BILL KICK PAST DEF BALL 

 John kicked the ball away JOHN KICK PAST DEF BALL AWAY 

 Mary died MARY DIE PAST 

 Mary bought some flowers MARY BUY PAST SOME FLOWERS 

 Ann bought a ball ANN BUY PAST INDEF BALL 

 John filled the bucket JOHN FILL PAST DEF BUCKET 

 John kicked the bucket JOHN DIE PAST 

 Bill ate the apple pie BILL EAT DEF APPLEPIE 

 Ann tasted an apple ANN TASTE PAST INDEF APPLE 
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Several aspects of the choice of lexomes are important. First, the sentences with
“kicked the bucket”, “passed away”, and “died”, are all associated with the
same lexome DIE. This is a many-forms-to-one-lexome mapping (for a discussion
of idiom comprehension in this framework, see Geeraert et al. 2017). Second,
past-tense word forms such as regular “passed” and irregular “ate” are mapped
onto two lexomes, PASS and PAST, and EAT and PAST respectively. One might
want to add further grammatical lexomes here, such as a lexomes for person and
number. Here, we have a one-form-to-multiple-lexomes mapping. Third, the com-
pound “apple pie” is represented as a single onomasiological entity with the lex-
ome APPLEPIE.

The task of the network is to identify all lexomes that are encoded in the
input. This multi-label classification task is one that has to be accomplished
solely on the basis of the letter trigrams in the input. For the sentence John
kicked the bucket, the unique trigraphs that constitute the input cues are #Jo,
Joh, ohn, hn#, n#k, #ki, kic, ick, cke, ked, ed#, d#t, #th, the, he#, e#b, #bu,
buc, uck, ket, et# (duplicate triplets like cke are included only once; again, the
# symbol represents the space character).

For this multi-label classification task, we use a coupled network as de-
scribed above. The first network has the trigram cues as input, and the lexomes
as output. A given set of input cues produces a vector of activations over the
lexomes. When presented with the sentence John kicked the bucket, a network
trained on the mini-corpus summarized in Table 1 incorrectly assigns a higher
activation to the grammatical lexome DEF than to the lexome DIE (see Figure 2,
left upper panel, and related discussion below). A language model bringing in
(often implicitly) sophisticated, high-level ‘knowledge about the world’, could
help alleviating this kind of problem for words in utterances, by providing
‘hints’ to desired outcomes. However, any such language model would give its
contribution “for free”, as nothing would be revealed about how this knowl-
edge was acquired in the first place.

Classification accuracy is improved by taking the vector of activations pro-
duced by the first network, and giving the second network the task of discrimi-
nating between the lexomes encoded in the utterance and those that are not
part of the message. This second network is a lexome-to-lexome network, but
the inputs are no longer dichotomous (1 or 0, depending on whether the lexome
is present in the input) but real-valued (see left panels in Figure 2). As a conse-
quence, the Rescorla-Wagner equations cannot be used. Instead, the closely re-
lated learning rule of Widrow and Hoff (1960), identical to the Rescorla-Wagner
rule under proper parameter selection, can be used for incremental updating of
the weights, learning event by learning event. Instead of the Widrow-Hoff
learning rule, the weights of the second network can also be estimated by
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means of Kalman Filtering (KF: Kalman 1960). The Kalman filter improves on
Widrow-Hoff learning by taking the cues’ uncertainty (i.e. variance-covariance)
into account.7

For the mini-corpus presented in Table 1, we estimated the weights for the
two networks. For each learning event, we first updated the weights of the first
network, then calculated the vector of activations over the lexomes, and subse-
quently used this as input for the second network; we used the Rescorla-Wagner
learning rule for the first network, and the Kalman filter for the second network.
By setting all relevant parameters of the two networks to compatible values (for
both networks, the learning rate (η) was set to 0.01 and for the second network
initial variances – input variance (i.e. cue uncertainty), and output variance (i.e.
noise) were all set to 1.0), we can inspect the details of an incremental training
regime when the networks are trained in parallel.

Figure 2 shows how the performance of the model develops for selected lex-
omes in sentences 8 and 9 (see Table 1), John kicked the bucket and Bill ate the
apple pie. For training, the 771 sentence tokens, each constituting one learning
event, were randomly ordered. To avoid clogging up the figure, only lexomes of
interest are graphed. The upper left panel presents the activations of the lex-
omes DEF, DIE, JOHN, and KICK. Initially, the network assigns a high activation
to KICK and a low activation to DIE. As training proceeds, the activation of the
unintended lexome KICK decreases while the activation of DIE increases. The
jagged pattern in the learning curves reflects that weights are strengthened
only when a given lexome is present in the learning trial, while they are weak-
ened whenever cues supporting e.g. DIE in a sentence with kick the bucket are
used in sentences that do not contain DIE. Thus, the weight on the connection
from the trigram ed# to DIE will be weakened whenever the sentence Ann
tasted an apple is encountered. The upper left panel also illustrates that the lex-
ome DEF has an inappropriately high activation even at the end of training.
The upper right panel shows the activations produced by the second network.
By the end of training, the lexomes DEF and KICK are properly downgraded,
and the lexomes actually encoded in the input, JOHN and DIE, correctly appear
with the highest activations.

7 A computationally efficient implementation of both WH and KF is currently under develop-
ment by the last author (P. Milin) and his research group (https://outofourminds.bham.ac.uk/).
Alternatively, given a set of learning events and the vectors of activations over the outcomes for
these learning events, finding the weights of the second network amounts to solving a set of
equations, which can be accomplished mathematically with the generalized inverse. In current
implementations, this second method is much faster, but, unfortunately, it misses out on the
consequences of incremental learning.
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The bottom panels present the development of activations for Bill ate the
apple pie. Here, the relative activations of APPLE and APPLEPIE are of interest.
Note that in the initial stages of learning, APPLE receives a higher activation
than APPLEPIE. By the end of learning, the first network already succeeds in dis-
criminating apple pies from apples, and the second network enhances the differ-
ence in activation even further. The fact that APPLE has not been completely
suppressed is, in our opinion, an asset of the model. In a multi-label classifica-
tion problem, a winner-takes-all set-up, as commonly found in interactive activa-
tion models, cannot work. In fact, we think that semantic percepts are co-
determined by all lexomes in the system, proportional to their activation. (In the
semantic vector space, this hypothesis translates into all lexomes having vectors
the length and prominence of which is modulated by their activation.) Thus, ac-
cording to the present example model, there is an apple in apple pie, but the
model also knows very well that Bill ate an APPLEPIE and not an APPLE. This
highlights that in the present approach, the semantics of complex words are not
derived from the semantics of their parts by some combinatorial operation.

Comparing the panels in the left and right columns of Figure 2 reveals that the
first network (the Rescorla-Wagner network) shows a more stable behavior, which
means that it ‘learns’ faster than the second network trained with the Kalman
Filter.8 Nevertheless, by the end of the learning sequence, only the second network
succeeds in giving the intended lexomes higher scores.

3.1.4 Advantages of NDL

An important design property of NDL is that ‘lexical access’ is defined as a multi-
label classification problem driven by low-level, sublexical features. A hierarchy of
units, such as letter features, letters, morphemes and words for reading, and pho-
nemes, syllables, morphemes, and words for auditory comprehension, is not part
of the model. In fact, such a hierarchy of units is viewed as disadvantageous, be-
cause low-level co-occurrence information is a-priori ruled out to influence com-
prehension. For instance, fine phonetic detail below the phoneme that is present
across (co-articulated) syllables is lost when comprehension is filtered first
through abstract phonemes and then through abstract syllables. Baayen, Shaoul
et al. (2016) show how the word segmentation problem, which is computationally

8 However, the Kalman Filter network learns much faster than a network trained with the
Widrow-Hoff learning rule, as can be seen by comparing the present results with those re-
ported in Sering et al. (2018) using a variant of WH.
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hard, is no longer an issue in a discrimination-driven approach. Arnold et al.
(2017), furthermore, show that an NDL network trained on cues derived from
the speech signal achieves an identification accuracy that is within the range
of human identification performance.9

Inspired by Word and Paradigm Morphology (Matthews 1974; Blevins 2016),
NDL likewise avoids the popular idea that the morpheme is a linguistic sign,
which goes back to post-Bloomfieldian American structuralism. This does not
imply that NDL denies the relevance of all linguistic variables such as tense, as-
pect, person, or number. In fact, the approach implements such variables through
‘experiential’ lexomes, as illustrated above in Figure 2. However, form units for
morphemes are not part of the model (cf. Milin, Feldman et al. 2017; and also con-
sult Schmidtke et al. 2017). Finally, the discriminative perspective also sheds light
on why – often fairly idiosyncratic – allomorphy is widespread in morphological
systems. Such allomorphy requires complex adjustment rules (or extensive listing)
in classic decompositional approaches, while from the discrimination stance allo-
morphy renders the base word and the complex word less similar in form, which
consequently makes the two easier to distinguish (see also Blevins, Milin, and
Ramscar 2017).

In the discriminative framework, NDL is a computational implementation of
implicit learning, i.e. the learning that goes on without conscious reflection. This
kind of learning is not unique to language. For instance, Marsolek (2008) dis-
cusses how error-driven updating of visual features affects cognition. Implicit
learning is likely the dominant form of learning in young children, whose cogni-
tive control systems are not well-developed. As prefrontal systems mature, it be-
comes possible to consider multiple sources of information simultaneously,
leading to markedly different performance on a variety of tasks (Ramscar and
Gitcho 2007). Indeed, Ramscar, Dye, and Klein (2013) provide an example of the
very different performance, on the same novel-object labelling task, of young
children on the one hand and adults on the other, with the children following
discriminative informativity, and the adults applying logical reasoning. As a

9 The auditory model also takes acoustic reductions in its stride. Standard computational
models of auditory comprehension are challenged by strongly reduced forms, which are ubiq-
uitous in spontaneous speech. When reduced forms are added to the inventory of word forms,
recognition systems tend not to improve. Although some words may be recognized better, the
addition of many short, reduced forms typically increases problems elsewhere (Johnson 2004).
From a discriminative perspective, reduced forms simply have different acoustic features, and
as the requirement is dropped that comprehension must proceed through an abstract stan-
dardized form representation, the acoustic features that are highly specific for the reduced
form can straightforwardly support the intended lexomes.
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consequence, NDL networks will often not be sufficient for predicting adult be-
havior in experiments addressing morphological learning using stimuli con-
structed according to some artificial grammar. For such data, NDL can still be
useful for clarifying where human performance deviates from what one would
expect if learning were restricted to implicit learning, which in turn is informative
about where additional processes of cognitive control addressing response com-
petition are at work. If the goal is to clarify implicit learning in adults, which we
think takes place continuously (but not exclusively), great care is required to en-
sure that participants do not have time to think about the task they are perform-
ing or to develop response strategies.

NDL networks provide functional models for tracing the consequences of
discriminative learning for lexical processing. Although there is ample neurobi-
ological evidence for error-driven learning (e.g. Schultz 1998), actual neural
computation is much more complex than suggested by the architecture of a
two-layer artificial neural network. Because of this, the NDL model remains ag-
nostic about possible spatial clustering of cues and outcomes in neural tissue.

Published work using NDL addresses primarily aspects of language compre-
hension. Much less work has been done on speech production. Ramscar, Dye, and
McCauley (2013) show how discrimination learning predicts the U-shaped learning
curve often observed for the acquisition of irregular morphology. Hendrix (2015)
developed a computational model for word naming that is built on two discrimina-
tion networks. Recent studies (Tucker et al. 2017; Lensink et al. 2017) suggest that
specifically the activation diversity measure helps predict the acoustic durations
with which segments or utterances are realized in speech. Whether a computa-
tional model of speech production that eschews representations for phonemes and
morphemes can be made to work is currently under investigation.

3.2 Temporal Self-Organizing Maps

Although most recent work in discriminative word learning has primarily focused
on form-meaning relationships based on highly-distributed a-morphous repre-
sentations, a recurrent network variant of discriminative learning has recently
been used in one-level self-organizing grids of processing nodes known as
Temporal Self-Organizing Maps (TSOMs, Ferro et al. 2011; Marzi et al. 2014;
Pirrelli et al. 2015). TSOMs develop Markov-like chains of memory nodes that can
mirror effects of gradient morphological structure and emergent paradigmatic or-
ganization upon exposure to simple inflected forms. By developing specialized
patterns of input receptors through recurrent connections, TSOMs recode one-
level stimuli auto-associatively, thereby exploiting the formal redundancy of
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temporal series of symbols. From this perspective, discriminative learning proves
to be a powerful strategy for scaffolding the input stream into internalized struc-
tured representations, which turn out to be useful for efficient word recognition
and production. Here we will show how TSOMs can be used as lexical memories.

3.2.1 Architecture outline

The core of a TSOM consists of an array of nodes with two weighted layers of
synaptic connectivity (Figure 3). Input connections link each node to the current
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Figure 3: Functional architecture of a Temporal Self-Organizing Map (TSOM). Shades of grey
represent levels of activation of map nodes, from low (light grey) to high (dark grey). The
figure depicts the integrated level of activation of the map after the word pop (‘#pop$’) is
shown in input.
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input stimulus (e.g. a letter or a sound), a one-hot vector presented on the input
layer at a discrete time tick. Temporal connections link each map node to the pat-
tern of node activation of the same map at the immediately preceding time tick.
In Figure 3, these connections are depicted as re-entrant directed arcs, leaving
from and to map nodes. Nodes are labelled by the input characters that fire them
most strongly. ‘#’ and ‘$’ are special characters, marking the beginning and the
end of an input word respectively.

3.2.2 Processing and storage

Storage and processing are traditionally seen as independent, non-interactive
functions, carried out by distinct computer components, with data representa-
tions defined prior to processing, and processing applied independently of input
data. Conversely, in a TSOM storage and processing are two different time-scales
of the same underlying process, defined by a unique pool of principles: (i) long-
term storage depends on processing, as it consists in routinized time-bound
chains of sequentially activated nodes; (ii) processing is memory-based since it
consists in the short-term reactivation of node chains that successfully responded
to past input. As a result of this mutual interaction, weights on input and tempo-
ral connections are adaptively adjusted as a continuous function of the distribu-
tional patterns of input data.

Algorithmically, when an input vector x tð Þ (say the letter o in Figure 3) is
input to the map at time t, activation propagates to all map nodes through both
input and temporal connections. The most highly activated node at time t is
termed Best Matching Unit (BMU tð Þ for short), and represents the processing
response of the map to the current input.

Following this short-term processing step, both input and temporal connec-
tions are updated incrementally, for map nodes to be made more sensitive to
the current input. In particular, for each jth input value xj tð Þ in the input vector,
its connection weight wi,j to the ith map node is incremented by equation 3:

Δwi, j tð Þ= γI Eð Þ ·GI di tð Þð Þ · xj tð Þ−wi, j tð Þ
� �

(3)

Likewise, the temporal connections of the ith node are synchronized to the acti-
vation state of the map at time t-1, by increasing the weight mi,BMU t − 1ð Þ on the
connection from BMU t − 1ð Þ to the ith node (equation 4), and by decreasing all
other temporal connections to the ith node (equation 5).

Δmi, h tð Þ= γT Eð Þ ·GT di tð Þð Þ · 1−mi, h tð Þ½ �; h=BMU t − 1ð Þ. (4)
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Δmi, h tð Þ= γT Eð Þ ·GT di tð Þð Þ · 0−mi, h tð Þ½ �; h ≠ BMU t − 1ð Þ. (5)

Note that for both input and temporal connections, the resulting long-term incre-
ment (respectively Δwi, j tð Þ and Δmi, h tð Þ) is an inverse function (respectively
GI ·ð Þ and GT ·ð Þ) of the topological distance di tð Þ between the ith node and the
current BMU tð Þ, and a direct function (respectively γI ·ð Þ and γT ·ð Þ) of the map’s
learning rate at epoch E.10

Because of this dynamic, BMU tð Þ will benefit most from weight adjustment at
time t, but information will nonetheless spread radially from BMU tð Þ to topologi-
cally neighbouring nodes. In the end, the map develops a topological organiza-
tion where nodes responding to the same symbol tend to cluster in a connected
area. Figure 4 shows a map trained on German verb inflected forms: each map
node is labelled with the input letter it responds most highly to. A node N gets the
label L, if the L input vector is at a minimal distance from N’s vector of spatial
weights. Nodes that are labelled with the same symbol are specialized for re-
sponding to that symbol in different temporal contexts. Intuitively, they store
long-term information about the typical contexts where the symbol happened to
be found in input. Notably, the node that stores specialized information about the
L symbol in a specific context is the same node that responds most highly to L
when L happens to be input in that particular context.

3.2.3 Information of ‘what’ and information of ‘when’

Input connections store information about the nature of the current input (or
‘what’ information). The layer of temporal connections encodes the expectation
for the current state of map activation given the activation of the map at the
previous time tick (or ‘when’ information). Equation 4 and equation 5, by which
‘when’ connections are dynamically trained in TSOMs, are strongly reminiscent
of Rescorla-Wagner’s equation 2. Given the input bigram ‘ab’, the connection
strength between BMU ‘a’ð Þ at time t-1 and BMU ‘b’ð Þ at time t will
(i) increase every time ‘a’ precedes ‘b’ in training (entrenchment)
(ii) decrease every time ‘b’ is preceded by a symbol other than ‘a’ (competition

and inhibition).

10 Intuitively the two functions define the degree of plasticity of the map, i.e. how readily the
map adjusts itself to the current input stimuli. Hence, they are inverse functions of the map’s
learning epoch E, i.e. their impact decreases as learning progresses.
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Note, however, that equation 4 and equation 5 apparently reverse the cue-
outcome relationship of equation 2: BMU tð Þ acts as a cue to BMU t − 1ð Þ and
strengthens the temporal connection from BMU t − 1ð Þ to BMU tð Þ accordingly
(entrenchment). At the same time, all the temporal connections to BMU tð Þ ema-
nating from nodes other than BMU t − 1ð Þ are depressed (competition). To under-
stand this apparent reversal, it is useful to bear in mind that the output of a
TSOM is an optimal self-organization of map nodes, based on past stimuli. This
is done incrementally, by adjusting the weights on temporal connections to op-
timize processing of the current input string. Ultimately, equation 4 and equa-
tion 5 concur to develop the most discriminative chains of BMUs given a set of
training data. This means that BMU tð Þ is not the map’s outcome, but the inter-
nally encoded cue to the map’s optimal self-organization. By differentially ad-
justing the incoming temporal connections that emanate from BMU t − 1ð Þ and

Figure 4: A labelled TSOM trained on German verb inflected forms. Highlighted nodes depict the
BMUs activated by the forms kommen ‘come’ (infinitive/1P-3P present indicative), gekommen
‘come’ (past participle) and kam ‘came’ (1S-3S past tense), with directed arrows representing
their activation timeline.
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non-BMU t − 1ð Þ, the current BMU tð Þ is in fact specializing a chain of BMUs for
them to keep in memory, at each step, as many previous processing steps as
possible. The outcome of BMU tð Þ is thus the incremental step in building such
maximally discriminative chain.

The interaction between entrenchment and competition accounts for effects
of context-sensitive specialization of map nodes. If the bigram ‘ab’ is repeatedly
input, a TSOM tends to develop a dedicated node for ‘b’ in ‘ab’. Since node spe-
cialization propagates with time, if ‘c’ is a frequent follower of ‘ab’, the map will
strengthen a temporal connection to another dedicated BMU responding to ‘c’
preceded by ‘b’ when preceded by ‘a’. Ultimately, the TSOM is biased towards
memorizing input strings through BMUs structured in a word tree (Figure 5). As
we shall see later in the section on serial word processing, a tree-like memory
structure favors word recognition by looking for word uniqueness points as early
as possible in the input string.

Figure 6 shows the scatter plot of the number of BMUs responding to input sym-
bols in a 40×40 node TSOM trained on 750 German verb forms, regressed on
the number of distinct nodes required to represent the same symbols in a word-
tree (Pearson’s r = .95, p < .00001). On average, the more contexts a symbol is
found in during training (accurately approximated by the number of distinct
tree nodes associated with the symbol), the more map nodes will be specialized
for that symbol. Context-sensitive specialization of BMUs allows a TSOM to
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allocate specific resources to input symbols that occur at specific points in
time. A TSOM develops a growing sensitivity to surface distributional properties
of input data (e.g. language-specific constraints on admissible symbol arrange-
ments, as well as probabilistic expectations of their occurrence), turning chains
of randomly connected, general-purpose nodes into specialized sub-chains of
BMUs that respond to specific letter strings in specific contexts. This ability is
fundamental to storing symbolic time-series like words.

3.2.4 Using TSOMs as lexical memories

In showing a word like #pop$ one symbol at a time on the input layer
(Figure 3), the activation pattern produced on the map by each symbol in the
string is incrementally overlaid with all patterns generated by all other symbols
making up the same string. The resulting Integrated Activation Pattern (IAP) is
shown in Figure 3 by levels of node activation represented as shaded nodes.
IAP activation levels are calculated according to the following equation:

ŷi =maxt = 1, ..., k yi tð Þf g; i= 1, . . . ,N (6)

where i ranges over the number of nodes in the map, and t ranges over symbol
positions in the input string. Intuitively, each node in the IAP is associated with
the maximum activation reached by the node in processing the whole input
word. Note that, in Figure 3, the same symbol ‘p’, occurring twice in #pop$,
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Figure 6: Scatter plot of per-symbol nodes allocated in a map trained on German verb forms.
Data are regressed on the number of nodes in a word-tree representing the training data.
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activates two different BMUs depending on its position in the string. After pre-
sentation of #pop$, integrated levels of node activation are stored in the
weights of a third level of IAP connectivity, linking the map nodes to the lexical
map proper (rightmost vector structure in Figure 3). The resulting IAP is not
only the short-term processing response of a map to #pop$. The long-term
knowledge sitting in the lexical connections makes the current IAP a routinized
memory trace of the map processing response. Given an IAP and the temporal
connections between BMUs, a TSOM can thus use this knowledge to predict, for
any currently activated BMU in the IAP, the most likely upcoming BMU. This
makes it possible to test the behavior of a TSOM on two classical lexical tasks:
immediate word recall and serial word processing.

3.2.4.1 Word recall
Word recall refers to the process of retrieving lexical information from the long-
term word store. We can test the accuracy of the IAPs as long-term lexical rep-
resentations by simulating a process of recall of a target word from its own IAP.
Since an IAP is a synchronous pattern of activated nodes, the task tests how
accurately levels of node activation in the IAP encode information about the
timing of the symbols that make up the target word. The process of recall con-
sists in the following steps:
(i) initialize:

a) reinstate the word IAP on the map
b) prompt the map with the start-of-word symbol ‘#’
c) integrate the word IAP with the temporal expectations of ‘#’

(ii) calculate the current BMU and output its associated label
(iii) if the output label is NOT symbol ‘$’:

a) integrate the word IAP with the temporal expectations of the current
BMU

b) go back to step (ii)
(iv) stop

A word is recalled correctly from its IAP if all its symbols are output correctly in
the appropriate left-to-right order.

There are a number of features that make IAPs interesting correlates of lexi-
cal long-term memory traces. First, activation of an IAP makes all its BMUs si-
multaneously available. This accounts for “buffering effects” (Goldrick and
Rapp 2007; Goldrick et al. 2010), where the idea that symbol representations
are concurrently maintained while being manipulated for recall explains the
distribution of substitution, deletion and transposition errors. Secondly, IAPs
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encode word letters in a context-sensitive way, allowing for representation of
multiple occurrences of one letter type in the same word. In addition, they rely
on a predictive bias, capturing facilitative effects of probabilistic expectation
on word processing. Finally, they may contain highly activated nodes that are
BMUs of other non-target IAPs, causing strong co-activation (and possible inter-
ference) of the latter. To illustrate, if two input strings present some symbols in
common (e.g. English write and written, or German macht ‘(s)he makes’ and ge-
macht ‘made’, past participle), they will tend to activate largely overlapping
patterns of nodes.

A TSOM can be said to have acquired a new word form when the word form
is accurately recalled from its own IAP. Accordingly, the time of acquisition of a
word can be defined as the earliest learning epoch since the word is always re-
called accurately. Monitoring the pace of acquisition of words through learning
epochs thus allows us to observe which factors affect word acquisition.
Concurrent memorization of morphologically redundant forms in inflectional
paradigms prompts competition for the same memory resources (processing
nodes and temporal connections). Due to equation 4, at each processing step,
weights on the temporal connection between BMU tð Þ and BMU t + 1ð Þ are rein-
forced (entrenchment). At the same time, equation 5 depresses presynaptic con-
nections to BMU t + 1ð Þ from any other node than BMU tð Þ(competition). This
simple per-node dynamic has far-reaching consequences on the global self-
organization of the map at the word level.

First, the number of nodes responding to a specific input symbol is directly
proportional to the token frequency of that symbol. As a result of this correla-
tion (Pearson’s r = .95, p < .00001), at early learning epochs, high-frequency
words are assigned a larger pool of processing resources than low-frequency
words are. In addition, entrenchment makes the time taken for a form to de-
velop strong temporal connections an inverse function of the token frequency
of the form. The large availability of processing nodes and dedicated connec-
tions causes high-frequency words to be acquired (i.e. accurately recalled from
their own IAPs) at earlier learning epochs than low-frequency words (Figure 7,
right panel).

Figure 7, left panel, shows the pace of acquisition for regular and irregular
verb forms in German, focusing on the interaction between word length and in-
flectional regularity.

Together with word frequency, word length appears to be a major factor delay-
ing the time of acquisition. Longer words are more difficult to recall since more,
concurrently-activated BMUs in an IAP are easier to be confused, missed or jum-
bled than fewer BMUs are. When word length and word frequency are controlled,
regularly inflected forms are recalled at earlier stages than irregulars. The evidence
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is in line with the observation that speakers produce words that belong to bigger
neighbor families more quickly than isolated words (Chen and Mirman 2012).

3.2.4.2 Serial word processing
Serial word processing involves the processing of an input signal unfolding with
time, as is the case with auditory word recognition. Serial lexical access and com-
petition are based on the incremental activation of onset-sharing items, forming
a cohort-like set of concurrently activated lexical competitors (Marslen-Wilson
1984; Marslen-Wilson and Welsh 1978). The so-called Uniqueness Point (UP) de-
fines the position in the input string where the cohort of competitors winnows
down to unity, meaning that there is only one possible lexical continuation of
the currently activated node chain. Figure 5 provides a few examples of Complex
Uniqueness Point (or CUP: Balling and Baayen 2008, 2012) for trees of inflection-
ally related lexical items. Unlike Marslen-Wilson’s original definition of UP,
which is meant to mark the point in time at which morphologically unrelated
words are teased apart, at CUP a target input word is distinguished from the set
of its paradigmatically-related companions.

To analyze serial word processing with TSOMs, we monitor the activation
state of a map incrementally presented with an input word. Upon each symbol
presentation on the input layer at time t, a TSOM is prompted to complete the
current input by predicting its most likely lexical continuation. The map propa-
gates the activation of the current BMU(t) through its forward temporal connec-
tions, and outputs the label LBMU t + 1ð Þ of the most strongly (pre)activated node
BMU t + 1ð Þ:

25
irregulars
regulars

20

le
ar

ni
ng

 e
po

ch

15

10
4 6 8

word length
10 12

25
irregulars
regulars

20

le
ar

ni
ng

 e
po

ch

15

10
0 0.5 1

word freq (log)
1.5 2 32.5

Figure 7: Marginal plots of interaction effects between word length (left panel), word
frequency (right panel), and inflectional regularity (solid lines = regulars, dotted lines =
irregulars) in an LME model fitting word learning epochs in German.
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BMU t + 1ð Þ= argmaxi= 1, ...,N mi, hf g; h=BMU tð Þ, (7)

where mi, h is the weight on the forward temporal connection from node h to
node i, and N the overall number of map nodes. Prediction accuracy across the
input word is calculated by assigning each correctly anticipated symbol in the
input word a 1-point score. Otherwise, the symbol receives a 0-point score. We
can then sum up the per-symbol prediction scores in an input word and aver-
age the sum by the input word length, to obtain a per-word prediction score;
the higher the score, the easier for the map to process the input word.

The panel in Figure 8 shows how prediction scores vary, on average, in 750
German verb forms, as a function of the incremental left-to-right processing of
input symbols. Input symbols are plotted by their distance from the word stem-
ending boundary (x = 0 denotes the first position in the input string after the
base stem). Training forms are selected from the 50 top-ranked German verb
paradigms by their cumulative frequency in Celex (Baayen et al. 1995), and
classified as either regular or irregular.11
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Figure 8: Marginal plot of interaction effects between letter distance to the stem-inflection
boundary (x axis, with x =0 marking the first letter in the inflectional ending) and inflectional
regularity (regular = solid line vs. irregular = dashed line) in an LME model fitting letter
prediction (y axis) in a TSOM trained on German verbs.

11 Following a paradigm-based approach to inflection (Aronoff 1994; Blevins 2016; Matthews
1991), all inflected forms belonging to regular paradigms share an invariant base stem (e.g.
walk, walk-s, walk-ed, walk-ing), whereas irregular paradigms exhibit a more or less wide vari-
ety of phonologically unpredictable stems (sing, sing-s, sang, sung, sing-ing). Paradigms can
thus be classified according to the number of base stems they select, and individual forms are
more or less regular depending on the number of their stem-sharing neighbors.
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In Figure 8, prediction scores are found to get higher while the end of the form
is approached. This is an expected consequence of the reduction in uncertainty
for possible lexical continuations at lower nodes in a word-tree. However, the
rate of increase follows significantly different slopes in regulars and irregulars.

The evidence is accounted for by the way regularly and irregularly inflected
forms are structured in a word-tree (Figure 5). German irregular paradigms (e.g.
geben) typically present vowel-alternating stems (e.g. geb-, gib-, gab-), which
cause their tree-like representation to branch out at higher nodes in the hierar-
chy (Figure 5). Stems in regular verbs, on the other hand, do not suffer from the
competition of other stem alternants within the same paradigm.12 The general
pattern is plotted in Figure 9, depicting the branching-out factor (or node
“arity”) in the word-tree representation of German verb forms by inflectional
regularity and letter distance from the morpheme boundary. Irregulars appear
to show a higher branching-out factor at early nodes in the word-tree represen-
tation. This factor, however, shrinks further down in the hierarchy more quickly
in irregulars than in regulars. This means that processing decisions made on
early nodes in the tree-structure reduce the level of processing uncertainty
downstream in the lexical tree. Intuitively, once a specific stem alternant is
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Figure 9: Marginal plot of interaction effects between distance to stem-inflection boundary
(x axis) and inflectional regularity (regular = solid line vs. irregular = dashed line) in an LME
model fitting node arity (y axis) in a word-tree of German verbs.

12 Clearly, both regular and irregular stems can be onset-aligned with other paradigmatically-
unrelated stems. Our evidence shows that this extra-paradigmatic “competition” affects both
regulars and irregulars to approximately the same extent.
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found at the beginning of an irregularly inflected form (e.g. gab- in gaben), the
number of admissible paths branching out at the end of the selected stem goes
down dramatically.

These structural properties accord well with evidence that time latencies in
processing words out of context are a function of lexical uniqueness points, i.e.
the word-internal positions where the human processor can uniquely identify an
input word. Balling and Baayen (2008, 2012) show that, in morphologically com-
plex words, lexical processing is paced by two disambiguation points: (i) the
uniqueness point distinguishing the input stem form other morphologically-
unrelated onset-overlapping stems (or UP1), and (ii) the complex uniqueness
point distinguishing the input form from other morphologically-related forms
sharing the same stem (or CUP). To illustrate (see Figure 5), in a toy German lexi-
con containing two paradigms only, namely geben (‘give’) and glauben (‘believe’),
UP1 for gebt (‘you give’, second person plural) is the leftmost letter telling gebt
from all forms of glauben: namely, e in second position. Its CUP is the leftmost
letter that distinguishes gebt from all other forms of geben: i.e. t in fourth position.

Balling and Baayen show that late UP1s are inhibitory and elicit prolonged re-
action times in acoustic word recognition. The evidence challenges the Bayesian
decision framework of Shortlist B (Norris and McQueen 2008), where interme-
diate points of disambiguation play no role in predicting response latencies in
auditory comprehension. Balling and Baayen’s evidence is nonetheless mod-
elled by a quantitative analysis of the TSOM processing response.

Figure 10 (top panel) depicts average prediction scores in a TSOM process-
ing input symbols in German verb stems, plotted by increasing position values
of UP1 in the word form, measured as a distance from the start of the word.
Late UP1s slow down processing by decreasing prediction scores. The bottom
panel of Figure 10 shows a similar pattern. As expected, late CUPs elicit lower
suffix prediction scores than early CUPs.

Finally, when the influence of both UP1 and CUP is taken into account,
their joint effect on processing is additive: for any two words with the same
CUP position, the word with a later UP1 is processed more slowly by a TSOM
than the word with an earlier UP1, in keeping with evidence of human process-
ing (Balling and Baayen 2012).

3.2.5 Competition and entropy

There is a clear connection linking competition among members of a morpho-
logical family, and the entropy of the frequency distribution of family members
(Baayen et al. 2006; Moscoso del Prado Martín et al. 2004). Milin and colleagues
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(Milin, Filipović Đurđević et al. 2009, Milin, Kuperman et al. 2009) put consid-
erable emphasis on the interactive role of intra-paradigmatic and inter-
paradigmatic distributions in accounting for differential effects on visual lexical
recognition. In particular, they focus on the divergence between the distribu-
tion of inflectional endings within each single paradigm (measured as the en-
tropy of the distribution of paradigmatically-related forms, or Paradigm
Entropy), and the distribution of the same endings within their broader inflec-
tional class (measured as the entropy of the distributions of inflectional endings
across all paradigms, or Inflectional Entropy). Both entropic scores are known

1

0.8

0.6

st
em

 p
re

di
ct

io
n

0.4

0.2

0
2

1

0.8

0.6

su
ffi

x 
pr

ed
ic

tio
n

0.4

0.2

0
2 4 6

CUP
8 10

3 4
UP1

5 6

Figure 10: Top panel –marginal plot of interaction effects between UP1 position (x axis) and stem
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and length of inflectional endings in an LME model fitting letter prediction in verb endings (y axis)
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to facilitate visual lexical recognition. If the two distributions differ, however, a
conflict may arise, resulting in slower recognition of the words. These effects are
the by-product of a model of the lexicon offering more or less explicit mechanisms
dealing with the simultaneous existence of potentially competing paradigmatically
related forms, and with the simultaneous existence of multiple paradigms. Similar
results are reported by Kuperman et al. (2010) on reading times for Dutch derived
words, and are interpreted as reflecting an information imbalance between the
family of the base word (e.g. plaats ‘place’ in plaatsing ‘placement’) and the family
of the suffix (-ing).

The difference between Paradigm Entropy and Inflectional Entropy can be
expressed in terms of Relative Entropy, or Kullback-Leibler divergence (DKL,
Kullback 1987), as follows:

DKLðpðejsÞjjp eð ÞÞ=
X

e
pðejsÞlog pðejsÞ

p eð Þ , (8)

where pðejsÞ represents the probability of having a specific inflected form (an
ending e) given a stem s, and p(e) the probability of encountering e. For any
specific paradigm being selected, the larger DKL, the more difficult is, on aver-
age, the visual recognition of members of that paradigm.

The relatively simple learning dynamic of TSOMs, expressed by rules (i)
and (ii) above, accounts for facilitative effects of paradigm entropy and inflec-
tional entropy on word learning.

To illustrate, we trained a TSOM on three mini-paradigms, whose forms are
obtained by combining three stems (‘A’, ‘B’ and ‘C’) with two endings (symbols
‘X’ and ‘Y’). Mini-paradigms were administered to the map on six training re-
gimes (R1-R6, see Table 2), whose distribution was intended to control the com-
parative probability distribution of ‘X’ and ‘Y’, and the comparative probability
distribution of the stems ‘A’, ‘B’ and ‘C’ relative to each ending. Across regimes
1–3, we kept the frequency distribution of X constant (but we made it vary
across paradigms), while increasing the distribution of Y both within each para-
digm (R2), and across paradigms (R3). Across regimes 4-5, the frequency of Y
was held constant, while X frequencies were made vary. Finally in R6 all word
frequencies were set to 100. Note that in R3 and R6 pðejsÞ= p eð Þ: i.e., the distri-
bution of each inflected form within a paradigm equals the distribution of its
ending (given its inflection class).

Results of the different training regimes are shown in Figure 11, where we
plotted weights on the connection between stems (‘A’, ‘B’ and ‘C’) and endings
(‘X’ and ‘Y’) by learning epochs, averaged over 100 repetitions of the same ex-
periment on each regime. Results were analyzed with linear mixed-effects mod-
els, with stem-ending connection weights as our dependent variable and the
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following three fixed effects: (i) the word probability p(s, e), expressed as a stem-
ending combination, (ii) the probability p(e | s) of a stem selecting a specific ending
(or intra-paradigmatic competition), and (iii) the conditional probability p(s | e) of
a given ending being selected by a specific stem (inter-paradigmatic competition).
Experiment repetitions were used as random effects. We refer the interested reader
to Ferro et al. (2018) for a thorough analysis of the effects. Here, we shortly
summarize the main results observed, and provide an analytical interpreta-
tion of this evidence.

Due to entrenchment (equation 4), the strength of each connection at the
morpheme boundary tends to be a direct function of the probability of each
word form, or p s, eð Þ (see panel R3 in Figure 11). However, other factors interact
with word frequency: connection strengths are affected by the probability of
each ending p eð Þ, with low-frequency words that contain high-frequency end-
ings (e.g. “AX” in panel R1) showing a stronger boundary connection than low-
frequency words that contain less frequent endings (“AY” in panel R1). This
boosting effect is modulated by two further interactions: the conditional proba-
bility distribution pðejsÞ, with connections to ‘X’ suffering from an increase in
the probability mass of ‘Y’ (panels R2 and R4), and the competition between
words selecting the same ending (rule ii), modulated by the entropy of the con-
ditional probability distribution pðsjeÞ, or HðsjeÞ (panels R4 and R5). In particu-
lar, if we control H sð Þ, i.e. the distribution of paradigms in the input data, the
entropy HðsjeÞ is expressed analytically by the following equation:

HðsjeÞ=H sð Þ−
X

s, e p s, eð Þlog p s, eð Þ
p sð Þp eð Þ : (9)

Table 2: Frequency distribution of 3 mini-paradigms (rows) in 6 training regimes (columns).

Frequency

paradigm id items regime  regime  regime  regime  regime  regime 

A #,A,X,$      

A #,A,Y,$      

B #,B,X,$      

B #,B,Y,$      

C #,C,X,$      

C #,C,Y,$      
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Where
P

s, e p s, eð Þlog p s, eð Þ
p sð Þp eð Þ is known as Mutual Information, a measure of the

mutual dependence between stems and endings, defined as the divergence of
the distribution p s, eð Þ of the verb forms in our training set from the hypothesis
that p s, eð Þ= p sð Þp eð Þ, or independence hypothesis (Manning and Schütze 1999).
Using the Bayesian equality p s, eð Þ= p sð ÞpðejsÞ, we can rewrite equation 9 above
as follows:

HðsjeÞ=H sð Þ−
X
s

p sð Þ
X
e

pðejsÞlog pðejsÞ
p eð Þ , (10)

where
P

s p sð ÞPe pðejsÞlog pðejsÞ
p eð Þ is the Kullback-Leibler divergence between

pðejsÞ and p eð Þ in equation 8 above. Equation 10 shows that, when H sð Þ is kept
fixed, HðsjeÞ is maximized by minimizing the average divergence between the
intra-paradigmatic distribution pðejsÞ of the endings given a stem, and the mar-
ginal distribution p eð Þ of the endings (see Table 3). In other words, verb para-
digms are learned more accurately by a TSOM when, on average, the distribution
pðejsÞ of the forms within each paradigm approximates the marginal distribution
of each ending in the corresponding conjugation class (compare R4 and R6). This
behavior, accounted for by the interaction of entrenchment and competition/in-
hibition in discriminative learning, is in line with the facilitation effects reported
for visual lexical recognition of inflected words and reading times of derived
words (Milin, Filipović Đurđević et al. 2009, Milin, Kuperman et al. 2009;
Kuperman et al. 2010). Besides, the evidence is compatible with more extensive
experiments on German and Italian verbs (Marzi et al. 2014), showing that, for
comparable cumulative frequencies, uniform distributions in training data (R6)
facilitate paradigm acquisition (see also Marzi et al. 2020, this volume).

Ferro et al. (2018) report comparable results with TSOMs trained on real inflec-
tion systems. In two experiments, a TSOM is trained on the same 50 German

Table 3: Different intra-paradigmatic frequency distributions obtained by keeping marginal
distributions fixed. The right-hand distribution is obtained with p s, eð Þ= p sð Þ · p eð Þ, to make
DKL p ejsð Þjjp eð Þð Þ=0. For the distribution on the left, DKL p ejsð Þjjp eð Þð Þ>0.

p s, eð Þ X Y p sð Þ p s, eð Þ X Y p sð Þ
A . . . A . . .

B . . . > B . . .

C . . . C . . .

p eð Þ . . . p eð Þ . . .
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verb paradigms by varying their frequency distributions: in the first experiment,
forms are presented with a uniform frequency distribution (Kullback-Leibler di-
vergence = 0); in the second experiment, the same set of forms was presented
with realistic frequency distributions (Kullback-Leibler divergence > 0). For each
map, the number of BMUs recruited for the recognition of inflectional ending
was counted. The two experiments were repeated 5 times, and results were aver-
aged across repetitions. As shown in Figure 12, in the training regime with uni-
form distributions, inflectional endings recruit a larger number of BMUs than in
the realistic training regime.

4 Concluding remarks

This chapter provided (i) a selective overview of mathematical and computational
approaches to the mental lexicon with a view to prospective unification, (ii) a re-
appraisal of traditional issues of word storage and processing, and (iii) a novel
perspective on these issues from a discriminative learning perspective. In prin-
ciple, a learning perspective on matters of lexical content, organization and
processing crucially can part ways with two alternative views: (i) that lexical
representations and word processing strategies are completely predetermined
by nature and structure of input data; (ii) that they are completely predetermined
by the blueprints of the human word processor. Computer simulations of lexical
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Figure 12: Number of BMUs recruited by inflectional endings, in two experiments where a
TSOM is trained with German verb forms with uniform (left) and realistic (right) frequency
distributions.
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modelling tell us that both word representations and processing strategies are
shaped up by a complex, dynamic interaction between the innate, domain gen-
eral principles governing the way humans encode and manage input stimuli,
and the structure, paradigmatic organization and frequency distribution of the
language input. Different global effects in the operation of a pool of low-level in-
teractive processes are the by-products of domain-specific levels of input repre-
sentations giving rise to a relatively autonomous organization. Likewise, in a
neuro-anatomical perspective, words can be investigated as emergent properties
of the functional interaction of different brain areas, each participating in multi-
ple functions (Price 2012, 2017).

We believe that the question of how much of a speaker’s internalized word
knowledge is determined and accounted for by the informativeness of the lan-
guage input, and how much is due to the operation of innate principles of serial
processing and storage is entirely empirical and, according to our current under-
standing, not yet amenable to a unifying theory. This is why any strongly dualis-
tic view on lexical matters, sharply separating lexicon from rules, storage from
processing, exceptions from regularities, declarative from procedural knowledge
strikes us as premature if not unwarranted. A more sensible way to make prog-
ress in this area is to focus on some basic cognitive operations and their interac-
tion, and investigate how higher-level language functions and operations emerge
from them. From this perspective, learning is not only central to language inquiry
as such, but it is also a fundamental key to methodological unification between
psycholinguistic and cognitive evidence on the one hand, constraining important
aspects of algorithmic modelling, and computer simulations on the other hand.
In this chapter, we showed that very simple principles of discriminative learning
can go a long way to accounting for complex behavioral evidence. Future work
will tell us if these accounts are entirely correct, or should be refined or rejected
altogether. Nonetheless, we see no serious alternative to a minimalist, bottom-up
approach, whereby innatistic assumptions and ad hoc language principles are
introduced as cautiously as possible.

This approach shifts the research focus from a “modular” view of lexical
storage, segregated and fundamentally independent from processing, to a radi-
cally “integrative view”, where storage and processing are in fact two different
dynamics of the same underlying process. We provide here a list of some crite-
rial features of such an integrative storage-processing framework (adapted from
Marzi and Pirrelli 2015):
– non-enumerative: there is no such thing as a finite list of stored items in

the human brain; there are many more (potential) pathways in our network
of partially overlapping lexical items, than those attested in the input; as a
result, the notion of “wordlikeness” (or “lexicality”) is a gradient one (a
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lexical entry can be perceived as more or less “typical”), and is not co-
extensive with the linguistic notion of “listedness” (Di Sciullo and Williams
1987);

– parallel: lexical items are activated simultaneously and accessed globally,
through resolution of highly distributed, shared sublexical relations;

– dynamic: information is never stable; every time a lexical representation is
successfully accessed, its content changes accordingly (e.g. through con-
solidation of connection strengths); moreover, access of any lexical repre-
sentation affects, more or less deeply, the activation state of all other
representations in the same lexicon;

– processing-dependent: a lexical representation is fundamentally grounded
in processing principles; in fact, it may consist in the same processing units
that are fired by the input word associated with the lexical representation;

– redundant: lexical representations consist of highly redundant, distrib-
uted relations, subsuming both lexical and sublexical structures;

– emergent/abstractive: word structure is not a prior, but the perceived by-
product of stored, unsegmented input stimuli (full forms or units larger than
full forms); perception of structure eventually feeds back on processing;

– multidimensional: the lexicon develops structural units defined over
many hierarchically arranged levels of representation, ranging from sounds,
syllables and morphemes, to words, phrases and sentences; nonetheless,
the hypothesis that complex units are processed through a staged sequence
of steps going from irreducible primitives to the whole input, is questioned
by the highly interactive nature of representation levels, showing pervasive
top-down effects on the processing of lower level units;

– two-way interaction: lexical representations affect processing, and are
crucially affected by processing.

An important cross-linguistic implication of this view is that not all morpholo-
gies are processed equally. They do not give rise to homogenous effects of
global self-organization. Differences may depend on differences in morphologi-
cal structure and degrees of predictability (Bompolas et al. 2017; Marzi et al.
2018; and Marzi et al. 2020, this volume). In turn, perception of morphological
structure may vary as a function of word length, frequency, perceptual sa-
lience, size of lexical neighborhood, distribution of neighborhood members, va-
lence, age of acquisition, embedding context and yet other factors. Computer
simulations have so far only scratched the surface of such a multifaceted dy-
namic interaction. An important emerging trend in the recent literature is that a
comparatively small pool of basic, language-independent principles can
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account for a number of differential effects that were commonly understood to
require different modules and functionally specialized processing routes.

Competition among multiple lexical cues for their discriminative value is key
to understanding fundamental aspects of the word learning dynamic (Baayen
et al. 2011; Ramscar and Yarlett 2007; Ramscar, Dye, and McCauley 2013; Milin,
Feldman et al. 2017). In most discriminative approaches to language learning re-
viewed here, units defined on one level of representation are understood and mod-
elled to cue units on a different level. For example, forms are cues to either lexical
or morpho-syntactic content. Although this is the most intuitive way to conceptual-
ize a cue-outcome relationship in language learning, we saw here that discrimina-
tive equations can be used to develop maximally efficient processing structures for
symbolic series defined on one representation level only: e.g. sequences of letters/
sounds in TSOMs, and lexome-to-lexome discriminative networks for word recog-
nition. One-level, re-entrant discriminative networks prove to be effective in a
number of tasks, from prediction-driven processing of upcoming symbols, to con-
text-sensitive filtering of irrelevant units in context. The most efficient way to learn
these tasks is to build a maximally discriminative network given the input context.
We showed that this straightforward principle can account for complex effects of
relative entropy on human processing of verb paradigms.

Finally, in spite of the wide variety of attested self-organizing systems, there
seems to be an upper limit on the level of structural complexity they can exhibit,
measured as the speaker’s uncertainty in making processing predictions about an
unknown inflected form in word production (or cell filling problem). Ackerman
and Malouf (2013) use Shannon’s information entropy to quantify the average con-
ditional entropy of predicting each form in a paradigm on the basis of any other
form in the same paradigm, to conjecture that inflectional systems tend to mini-
mize such figure of merit for inflectional complexity. In a discriminative learning
framework, Ackerman and Malouf’s conjecture can naturally be interpreted in
terms of the average degree of predictability of word forms in either recognition or
recall. Based on evidence from German and Italian, we showed that processing un-
certainty is differently apportioned, depending on the nature of the processing
task (Marzi et al. 2016). While irregulars can hardly be predicted when they are
unknown because they typically have fewer neighbors than regulars have, irregu-
lars are readily accessed once they are acquired, for exactly the same reason.
Thus, existence of irregulars is not dysfunctional, but instrumental to the need to
balance processing costs in the two tasks. Similarly, in a typological perspective,
non-concatenative morphologies make stems harder to process, due to the variety
of their allomorphs, but easier to be completed with their appropriate inflectional
endings. Conversely, concatenative morphologies tend to make stems easier to
process, but increase processing uncertainty in the selection of the inflectional
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ending at the morpheme boundary (Marzi et al. 2018; Ferro et al. 2018; Marzi et al.
2019; Marzi et al. 2020, this volume).

Of late, the advent and exponential growth of neuroimaging technology has
allowed in-vivo investigation of the connection between brain data and psycholog-
ical evidence, establishing a level of material continuity between observations and
hypotheses in the domains of neuroscience and cognitive psychology. In the near
future, further technological progress will be able to improve the spatial and tem-
poral resolution with which functional regions are located anatomically, to provide
novel evidence and constraints on computations and word representations in the
brain. Nonetheless, the greatest challenge ahead of us is probably to understand
“how” processing takes place in each region and how it interacts with information
processed in other regions recruited for the same linguistic task. In this connec-
tion, computational and mathematical models of behavioral evidence and func-
tionally related anatomic data have a great potential in bridging the persisting gap
between low-level, interactive brain processes and high-level, cognitive models of
language knowledge and language behavior. We believe that such integrative,
multi-scale, performance-based models of word knowledge will provide an impor-
tant contribution to a deeper understanding of how language works and is imple-
mented in the brain.
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