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a b s t r a c t

Developments in computational techniques including clinical decision support systems, information pro-
cessing, wireless communication and data mining hold new premises in Personal Health Systems. Perva-
sive Healthcare system architecture finds today an effective application and represents in perspective a
real technological breakthrough promoting a paradigm shift from diagnosis and treatment of patients
based on symptoms to diagnosis and treatment based on risk assessment. Such architectures must be
able to collect and manage a large quantity of data supporting the physicians in their decision process
through a continuous pervasive remote monitoring model aimed to enhance the understanding of the
dynamic disease evolution and personal risk. In this work an automatic simple, compact, wireless, per-
sonalized and cost efficient pervasive architecture for the evaluation of the stress state of individual sub-
jects suitable for prolonged stress monitoring during normal activity is described. A novel integrated
processing approach based on an autoregressive model, artificial neural networks and fuzzy logic mod-
eling allows stress conditions to be automatically identified with a mobile setting analysing features of
the electrocardiographic signals and human motion. The performances of the reported architecture were
assessed in terms of classification of stress conditions.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The medical knowledge is frequently updated and re-evaluated
comprising new risk factors identification, new drugs and diagnos-
tic tests, new evidences from clinical studies [1]. The challenges
faced today are to incorporate the most recent and evidence-based
knowledge into Personal Health Systems [2,3] and to transform col-
lected information into valuable knowledge and intelligence to sup-
port the decision making process [4,5]. Several expert systems
tailored to specific diseases are nowadays available in clinical
research [6–11], often covering the topics addressed by European
priorities [12]. Technology can play a key role to gain the continuity
of care and a person-centric model, focusing on a knowledge-based
approach integrating past and current data of each patient together
with statistical evidences. In currently applied care practices, the
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emergence of clinical symptoms allows a disease to be discovered.
Only then, a diagnosis is obtained and a treatment is provided. Cur-
rently, different healthcare practice models are used [12–14]. In
some models, the Hospitals is the core of the care and any level of
technology available at the patient site may help in providing infor-
mation useful for both monitoring, early diagnosis and preventive
treatments. In other models dedicated call centers or point of care
act as an intermediary between hospital/heath care professional
and patients. Many of the solutions available today on the market
follow the above-mentioned model and call center services or point
of care are used by the patients just as a complement to the hospi-
tal-centerd healthcare services [12–15]. In the more advanced Per-
sonal Health Systems [16–20] model focused on the empowerment,
the ownership of the care service is fully taken by the individual.
This model is suitable for any of the stages of an individual’s care
cycle, providing prevention, early diagnosis services and personal-
ized chronic disease management. Under this model, the technolog-
ical innovations can help each person to self engage and manage
his/her own health status, minimizing any interaction with other
health care actors. Solutions fully led by the patients are the
overwhelming majority of those developed by research efforts
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covering chronic disease management, lifestyle management and
independent living. Even if, in the clinical practice this model has
not been yet implemented, it can be considered as a target to be
reached achieving at the same time the empowerment of the users
and the reduction of workload and costs, preserving the quality and
safety of care.

The main reasons for the lack of effective implementations of
Personal Health Systems range from legal and societal obstacles,
issues related to the real application of wearable devices, inappro-
priate use of decision support systems and the skepticism of many
healthcare professionals. Wearable devices need to be non-
intrusive, easy to use, and comfortable to wear, efficient in power
consumption, privacy compliant, with very low failure rates and
high accuracy in triggering alarms, especially if used for diagnostic
purposes [18–21]. The decision support system must infuse clinical
knowledge into methodology and technology, thus enhancing the
reliability of high-level processing systems customized to his/her
personal needs represents the next critical step. The currently used
approaches are based on values of health-related parameters, often
monitored instantaneously during a check-up [21,22]. Moreover,
the correlations across physiological, psycho-emotional, environ-
mental and behavioral parameters, such as a patient’s physical
activities or stress levels, are difficult to explore. Refer to this, the
experience sampling method approach, i.e. a naturalistic observa-
tion technique that allows capturing participants’ thoughts, feel-
ings, and behaviors at multiple times across a range of situations
as they occur in the natural environment, can be adopted in re-
search and clinic [23,24], especially for psychological stress [25].

The stress system represents an essential alarm system that is
activated whenever a discrepancy occurs between the expectation
of an organism and the reality it encounters. Lack of information,
loss of control, unpredictability or psychosocial demands can all
produce stress responses. Allostasis, i.e. the adaptive response of
the organism to a stressful agent, is produced by the joint activity
of the central nervous system, the hypothalamus–pituitary–adre-
nal axis and the immune/proinflammatory system [26]. It appears
clear that stress as it relates to illness has been studied by a variety
of disciplines with differing research traditions. Each medical sub-
specialty emphasized the capability of stress in participating in the
pathogenetic process of disease of competence. It resulted a varied
plethora of detailed physiologic models in which psychological
stress can intervene in regulation of different organ system activity
(for example variation of blood pressure and heart rate, platelet
activation, immune and inflammatory response under mental
stress), but are not included in an integrative model to outline
the coordinated individualized biological response of the entire
body response to current challenging circumstances, which is the
primary means of connecting experience with resilience or risk
of the disease.

Presently, distributed wireless systems for stress monitoring
consisting of biomimetic wearable suits for the unobtrusive moni-
toring of physiological and behavioral signals and decision support
systems are continuously improving [19,27–30]. Such systems
integrate sensors together with on-body signal conditioning and
pre-elaboration, as well as the management of the energy con-
sumption and wireless communication systems. Previous interest-
ing results indicate a correlation between physiological cues and
stress levels [27–31]. Some works demonstrate the feasibility of
detecting stress acquiring physiological measurements, but using
complex sensor architectures during the experiments and complex
labeling methods often based on judgement of human coders
[27,28]. Other simpler approaches indicate that HRV may represent
an inexpensive methodology for the objective assessment of hu-
man reactions under stress, but the results are only preliminary
and stress is detected just by means of a manual post-processing
method [29,31].
In this work an automatic simple, compact and efficient perva-
sive architecture for the evaluation of the stress state of individual
subjects in a natural environment with a minimal discomfort for
the subject is reported. Differently from the state-of-the-art, our
system is suitable for prolonged stress monitoring during normal
activity. The innovative contribution of the paper relies on the pro-
cessing approach able to automatically identify stress conditions of
the patient from physiological and behavioral information. More-
over, our architecture and method is able to remotely (anytime
and anywhere) acquire and analyse heterogeneous medical data
originating from historic data, medical knowledge sources, collec-
tion of vital sign data by wearable sensors and handheld devices,
as well as it is able to control all modules of the elaboration chain,
including clinical protocol management and the sensor interfaces,
and to support clinical decisions. The architecture is modular, flex-
ible and simple, and has the potentiality to empower the user to
take a more proactive role in prevention of stress, guided by data
coming from sensor networks and personal health profile.
2. Mobile pervasive architecture for patient-centered systems

From a general point of view, a mobile pervasive architecture
consists of different wireless modules cooperating in order to per-
form data acquisition from multiple sensors, data analysis and
decision through several techniques and data redirection and feed-
backs. The architecture here proposed addresses the design of a
flexible instrument for data acquisition, management, elaboration
and decision suitable for those systems which are equipped with
distributed remote wearable devices, where a particular attention
is paid to the heterogeneous medical information flow and inter-
process communication (Fig. 1). Moreover, the possibility to oper-
ate in real time imposes critical efficiency requirements to each
single module.

The core of the architecture is the Personal Digital Assistant
(PDA), which collects data from the Personal Mobile Sensing Plat-
form using a configurable time resolution and dedicated Bluetooth
communication channels. A data pre-processing step is performed
on the sensor electronic board, so that the wireless communication
with the PDA is significantly reduced.

The PDA is able to integrate the time-aligned wearable sensor
information and to store relevant data in its own local DataBase
(DB). The PDA performs a provisional analysis of device-mediated
responses (Lite Processing), being able to take into account context
information (GPS, motion activity) and physiological data (e.g.
hearth rate, heart rate variability, breath rate) to obtain a provi-
sional score (Mobile Reasoning Module). The provisional score trig-
gers a more accurate analysis in order to perform the local
feedback strategy and allows the user to get as feedback the output
of the analysis.

In the case of a provisional score higher than a fixed (configura-
ble) threshold, the PDA is able to establish a connection with the
remote central DB and to upload the collected data for further
and more accurate analysis. The remote central DB I/O communi-
cation layer is implemented through a Web Services Description
Language (WSDL) interface. The WSDL interface design pays atten-
tion to the management and the synchronization of data and pro-
cesses. Pattern recognition algorithms, knowledge-based and rule-
based models are defined as running processes inside the analysis
module.

In the PDA a data fusion approach is implemented in order to
act as a buffer for the flow of information coming in from different
sensors. With this strategy sensor data fusion is gained enabling an
abstraction with respect to the specific technology of the transduc-
ers. Signals coming from the sensors are gathered in parallel and
encoded according to a dedicated protocol. A specific filter for each



Fig. 1. The mobile pervasive architecture.
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sensor receives the encoded information. The information available
in the PDA data fusion module is encoded in order to set up a com-
mon communication language between the sensor interfaces and
the analysis module. This guarantees an increased flexibility
thanks to the presence of interfaces performing the function of
interpreters for the specific hardware and filters which specify
the way the communication framework senses and communicates
the information.

Analysis and decision modules run asynchronously in respect of
the PDA. The server analysis module is realized on modular knowl-
edge basis enabling an objective and quantitative assessment of
physiological data and the decision support provides warnings
and motivating feedback. At fixed (configurable) time steps or fol-
lowing the request of the user, the modules will: (i) retrieve rele-
vant data from the remote central DB; (ii) apply the analysis
algorithms; (iii) store the analysis results in a specific report within
the remote central DB. The PDA can be configured to poll the anal-
ysis report at fixed time steps or at the request of the user. In this
way the PDA always works as client system in respect of the server
analysis modules.

Portable devices compliant with the following features are
adopted: (i) High level operating system (Windows Mobile, iOS,
Android); (ii) Large screen for user-interface (3–9 inches); (iii)
Touch screen; (iv) Internal memory + SD card (2 GBs); (v) Powerful
internal CPU (400–600 MHz); (vi) WiFi/3G connection for commu-
nication with remote servers; (vii) Bluetooth/Zigbee connection for
communication with wearable sensors; (viii) Long-life Battery
(1 day autonomy at least); (ix) Ergonomics.

The PDA will communicate with the server in the following
situations:

� Time-based connection: All data needed by the remote analysis
modules should be uploaded. Data compression is essential to
limit the upload time. Moreover, encryption is mandatory to
grant privacy of sensible/personal data. Continuous authentica-
tion may be avoided using authorized certificates.
� Emergency connection: During sensor monitoring, if the mobile

reasoning module detects an unphysiological condition the PDA
sends the collected data to the central server, in order to receive
clinical assessment and treatment planning.
� (Event awareness) connection on-demand: During the report
polling process, the PDA uploads the amount of data requested
by the remote analysis modules.

3. Personal Mobile Sensing Platform

The Personal Mobile Sensing Platform (PMSP) is a small-form-
factor wearable device designed for bio-monitoring applications.
Biosignals such as biopotentials and daily activity motion states
are acquired by wireless multimodal devices attached to a patient’s
body and/or worn and sent to the PDA for processing and/or relay-
ing to a remote terminal. Each sensor acquires the signal, performs
low-level, real-time signal preprocessing, and wirelessly commu-
nicates with the PDA, which in turn connects to a remote server
for further signal processing and storage. The use case here pro-
posed integrates physiological and behavioral sensors in the PMSP.

The PMSP integrates one ECG acquisition board in an ergonomic
unobtrusive, soft-textile chest strap with an integrated tri-axial
accelerometer. The acquisition board includes a low-power Class
2 Bluetooth� Module (RN-42, Roving Network), transduction,
amplification and signal pre-processing blocks. The chest strap is
mainly made of flexible biocompatible elastomer, cotton and ela-
stan; it is fully washable and guarantees an optimal and comfort-
able contact between the strap and the thorax adapting itself to
the body shape. The three-axial accelerometer is employed to
monitor the user activity and to contextualize the features ex-
tracted from the physiological sensor. The wearable chest strap
integrates smart sensors together with on-body signal condition-
ing and pre-elaboration, as well as the management of the energy
consumption and wireless communication systems. Both signals
are analogue-to-digital converted with 12-bit accuracy in the
±3 V range. For ECG and accelerometer sensors, the firmware of
the microcontroller adopts a sampling rate of 100 Hz. It uses an
appropriate interrupt management to avoid possible loss or over-
write of data transmission. The data are acquired in real-time
and analyzed under Lite Processing on a PDA using Bluetooth
connection. All the data are managed and collected with a software
realized in Visual C# running in the PDA, which collects digital ECG
and accelerometer signals and provides (i) data synchronization,
(ii) data storage, and (iii) data communication to the WSDL



Table 1
device description.

Features Description

Wearable sensing components ECG + Accelerometer integrated in chest strap
Sensor electronic board SHIMMER

�
platform: ECG lead with four electrodes and triaxial accelerometer integrated. Processing unit is based on MSP430F1611.

Dimension 53 � 32 � 23 mm of electronic board
Power supply 3.6 V, rechargeable battery
Battery life 8 h
Communication channel Bluetooth
Communication protocol Serial
Internal sampling rate 100 Hz
External coding ECG + Accelerometer signal
External output type Byte
External output range 0–255

1 The power spectral density (PSD) is a positive real function of a frequency variable
associated which describes how the power of a signal or time series is distributed
with frequency. Moreover following the Wiener–Khinchin theorem the PSD is the
Fourier transform of the autocorrelation function of the signal if the signal is treated
as a wide-sense stationary random process.
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interface. Additional devices for recording other parameters can
also be added. In Table 1 a description of the device is reported.

A set of parameters and functions are available to the PDA
developers to change the relevant device options and to control
the data acquisition process. The communication protocol is real-
ized through a serial communication using the packet format re-
ported in Fig. 2, very powerful for detecting byte or packet losses
because it is check summed and sequenced.

The interactions among the different components are reported
in Fig. 3. As it can be noticed, the user interaction does not require
further workload than the use of the sensors in contact on the body
and the calibration, whereas the system performs a multiple step
interaction involving three logical entities: PMSP, bio-monitoring
application installed on PDA, remote Central server connected to
the analysis module. The user is asked to calibrate the sensors at
the beginning of each new acquisition session.

The available functions are reported in Table 2.

4. The analysis module and the clinical decision support system
for stress monitoring

The analysis module is based on Knowledge-Based Models
(KBM) [13–16]. The module receives the features extracted from
the acquired signals as input data. Inside the analysis module,
the clinical decision support system (CDSS), taking into account
the response of the knowledge based models, provides a feedback
to the patients in terms of four momentary stress levels (low, med-
ium, moderate, high), in order to empower her/him to take a more
proactive role in prevention of stress, and a feedback to the physi-
cian in terms of physiological and behavioral information to be
used for individual treatment planning aimed to improve compli-
ance and long-term outcome, i.e. momentary stress level, activities
and autonomic nervous system information. The analysis module
infers the physiological arousal within subjects’ typical daily envi-
ronments and activities, focusing on the analysis of the autonomic
nervous system as shown in Fig. 4. In the next future any warnings
and motivating feedback could be easily included in the remote
central DB and integrated with medical records and clinical reports
in order to support the clinician in the analysis of clinical variables
and in the decision making process, as well as to prevent medical
errors and improve patient safety.

The autonomic nervous system is a control system function-
ing largely below the level of consciousness, to predict auto-
nomic reactivity to emotional stress. It is classically divided
into two subsystems: the Parasympathetic Nervous System
(PSNS) and Sympathetic Nervous System (SNS) [32]. In particular
it is accepted that conditions such as mental stress and anxiety
are associated with an increase in sympathetic tone (SNS) and in
contrast with a decrease in vagal tone (PSNS), during resting and
relaxing conditions [33,34]. The ‘‘sympathovagal balance’’ refers
to a reciprocal functional relationship, implying that when one
of the two subsystem of the autonomic outflow is excited, the
other is inhibited, according to a central push-pull pattern of
organization [35].

For each individual, both sympathetic and parasympathetic
tones fluctuate throughout the day. The state-of-the-art reports
the following evidences [36–38]: (1) the heart period variability
defined as the High Frequency (HF, range between 0.15–0.50 Hz)
spectral component, is a marker of vagal modulation; (2) the heart
period variability defined as the low-frequency (LF, range between
0.04–0.15 Hz) component is a marker of sympathetic modulation
and (3) the reciprocal relation existing in the heart period variabil-
ity spectrum between power LF band and power HF band is a mar-
ker of the state of the sympathovagal balance modulating sinus
node pacemaker activity. The architecture is identified to help each
person to manage stress by his/her own, minimizing any interac-
tion with other health care actors.
5. Methods

Dedicated algorithms are implemented in the PDA to filter, pro-
cess and extract relevant features from the three lead ECG and
three-axis accelerometer signals. The features are the input of
the analysis module, which consists of two sub-systems. The for-
mer is devoted to the analysis of the ECG signals, while the latter
to the analysis of the three-axis accelerometer signals. The ECG sig-
nals are filtered through a 35 Hz low-pass filter in order to remove
artifacts, and processed through the automatic algorithm devel-
oped by Pan-Tompkins [39] to detect the QRS complex and to ex-
tract the Heart Rate (HR) and Heart Rate Variability (HRV), i.e. time
series sequence of non-uniform R–R intervals. An auto-regressive
model is dedicated to the extraction of frequency-domain features
from HRV using an estimation of the 1 Power Spectral density (PSD)
according to the Yule–Walker algorithm [40]. The model quantifies
the sympathetic and Parasympathetic Nervous System activities
associated with different frequency bands of the power distribution.
The energy of High Frequencies (HF) and Low Frequencies (LF) com-
ponents of the HRV, and the LF/HF ratio, allow cardiac vagal and
sympathetic activities as markers of the autonomic interaction to
be estimated. In order to reduce the variability of the LF/HF ratio
during activity, the sympathetic and Parasympathetic Nervous Sys-
tem activities are evaluated during the resting conditions. The Signal
Magnitude Area (SMA) [40] is extracted from the three-axis acceler-
ometer in order to reveal the resting condition of the user and trigger
the analysis module to process the HRV. SMA is evaluated by the fol-
lowing equation:



Fig. 2. Packet format.

Fig. 3. Interactions among the different components of the pervasive architecture.

Table 2
Device functions.

Function Description Flow

StartMonitorApplication();
OpenSerialComPort();

The PDA issues the start of sensor data acquisition and open serial communication User – >PDA – > devices

StopMonitorApplication();
CloseSerialComPort();

The PDA issues the device to stop data acquisition and streaming. User – >PDA – > devices

StartDataAcquisition(); Data streaming will start at the specified frame time interval. Device – > PDA
Req Physiological Data Sensor#(); The PDA ask the device (request) to send Physiological Signals from the specific

sensor#
PDA – > devices

Data_HealthSensor#() The device sends to the PDA the data from the specific sensor#. Device – > PDA
Req Context Information Sensor#() The PDA ask the device (request) to send motion localization signals from the specific

sensor#
PDA – > devices

Data_ContextSensor#() The device sends to the PDA the data from the specific motion localization sensor#. Devices – > PDA
Req_Clinical_Report() The PDA sends a request of clinical reports to central database PDA – > remote Central DB
Data_Clinical_Report() The central database responses to the request of PDA Remote Central DB – > PDA
Tx_DataFusion() Fusion of sensor data coming from PDA Remote server – > PDA – >

devices
Knowledge_based_results() Interpretation of features using knowledge based models Remote server – > PDA – >

devices
Decision_Support() Extraction of feedback to the user Remote server – > PDA – >

devices
CalibrationRequest_HealthSensor#() The PDA ask the device to calibrate the sensor Remote server – > PDA – >

devices
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Fig. 4. Use case application.
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where w is the window length, while xi, yi and zi refer to the body
components of the x-, y-, and z-axis samples in a window,
respectively. The resting condition is identified if SMA is below a
fixed threshold. During activities, the three-axis accelerometer sig-
nals are analyzed through a KBM for the recognition of the motion
activity information. KBM consists in a self-organizing Kohonen
map (KSOM) [41]. The KSOM [41,42] is composed of an input layer
and an output layer. Each neuron in the input layer is linked with
each neuron in the output layer by weights. Let X represents the
input vector, W the matrix of weights, and Y is the output neurons.
During the training of the model, at time t, for each output neuron j,
the activation is evaluated by the Euclidean distance, i.e. Yj ¼
kWjðtÞ � XðtÞk. The neuron with the minimum activation is the
winning neuron. The weights wij of the winning neuron i and of
its neighbourhood neurons at the time t, for the input vector X,
are modified according to the following equation: wijðtÞ ¼
wijðt � 1Þ þ aðtÞ½XðtÞ �wijðt � 1Þ�, where the gain coefficient a(t) is
in the range (0,1). At the end of the training process, a supervised
labeling step is performed.

The CDSS is implemented by means of a fuzzy-logic rule-based
algorithm. The CDSS receives as input the features extracted by
the sub-systems of the analysis module and provides as output
the level of stress (SL). The fuzzy-logic rule-based algorithm con-
sists of three steps: fuzzification, inference and defuzzification. In
the former, the inputs are transformed from continuous values to
linguistic variables through the definition of membership func-
tions. In the second, the linguistic variables, in function of rules in
turn generate other linguistic values as output. In the latter, the
linguistic variables are converted to continuous values (real outputs
of the system). The output of the CDSS could be merged with other
personal and historical clinical, physiological and behavioral data in
the central clinical DB guaranteeing a continuous and cyclic clinical
assessment and treatment planning, while providing a feedback to
the subject dedicated to enhance his/her motivation and empow-
erment.

6. Experimental results

Six healthy volunteers were enrolled age 22 ± 3 (3 males and 3
females) in the study. The parameters of the CDSS, i.e. the mean HR
and the LF/HF ratio after spectral analysis from HRV at rest condi-
tions, were tailored to each subject in function of the individual
psychological profile (intrinsic motivation, self determined extrin-
sic motivation, demotivation) assessed by expert psychologists.
Yule–Walker algorithm is implemented to estimate the PSD of
the RR interval by fitting an autoregressive (AR) prediction model
to the windowed input data by minimizing the forward prediction
error in the least squares sense. The order 5 of the model is selected
using Akaike’s Information Criterion [43]. PSD estimation was
adopted to assess the LF/HF ratio at rest conditions. An example
of 5 min ECG monitoring is reported in Fig. 5; the domination of
parasympathetic activity (graphics on the left) and sympathetic
activity (graphics on the right) can be observed.

As regard the activity classification, a 10 � 10 neurons KSOM
with the parameters a(T) = 0.9 and a training phase of 2000 epochs,
which allow to obtain the best performance of the model, were
adopted. The volunteers were asked to usually act during their dai-
ly life, while wearing the pervasive architecture. Five target classes
were defined: standing, sitting, lying down, walking and running.



Fig. 5. RR-Time Series and PSD estimation using Yule–Walker model after five minutes of ECG monitoring at rest condition.

Fig. 6. Activation of the KSOM after training and labeling steps. (blue = standing; yellow = walking; red = running; orange = sitting; green = lying). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Confusion matrix for all the subjects.

Standing Walking Running Sitting Lying

Standing 92.72 ± 0.19 1.45 ± 0.13 1.83 ± 0.8 3.22 ± 0.19 0.78 ± 0.21
Walking 1.32 ± 0.15 86.36 ± 0.08 8.09 ± 0.21 1.75 ± 0.23 2.48 ± 0.26
Running 1.44 ± 0.24 5.41 ± 0.13 89.55 ± 0.24 2.49 ± 0.16 1.12 ± 0.11
Sitting 0.53 ± 0.18 1.59 ± 0.12 2.68 ± 0.18 92.79 ± 0.25 2.41 ± 0.17
Lying 1.21 ± 0.5 0.17 ± 0.13 1.22 ± 0.8 2.89 ± 0.21 94.51 ± 0.14

1302 G. Tartarisco et al. / Computer Communications 35 (2012) 1296–1305
The mean, energy and variance [44] as input for the KSOM were
extracted during a sliding 5 s window from each component of
the acceleration data (for a total of 9 features). The performance
of the classification task is evaluated using the confusion matrix,



Fig. 7. Weights of each activity.

Table 4
Activity in function of the AI and the psychological profile.

Psychological profiles

Activity
index

Intrinsic
motivation

Self
determined
extrinsic
motivation

Non self
determined
extrinsic
motivation

Amotivation

>1.8 Active High High High
1.6 < AI 6 1.8 Moderate Active Active High
1.4 < AI 6 1.6 Moderate Moderate Moderate Active
1.2 < AI 6 1.4 Sedentary Sedentary Moderate Moderate
1 < AI 6 1.2 Sedentary Sedentary Sedentary Sedentary

Table 5
Input and output of the fuzzy-logic rule-based
algorithm.

Description

Inputs
LF/HF ratio Symphatovagal ratio
HR Heart Rate
AI Activity index

Output
SL Stress Level:

LOW
MEDIUM
MODERATE
HIGH

Fig. 8. Membership functions and fuzzy sets.
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which the generic elements i, j indicate how many times in mean
percentage ± standard deviation a pattern belonging to the class i
was classified as belonging to the class j [41]. In order to check
the generalization capability of KSOM, a 10-fold cross-validation
process was carried out; each fold consists of randomly selected
samples, at least one for each category index was included in each
fold. In Fig. 6 the visual representation of the KSOM model with
clusters and centroids are reported. In Table 3 the confusion matrix
is reported. It is worth mentioning the high discrimination perfor-
mance of the model.

Following the activity discrimination step, the Activity Index
(AI) is assessed according to the following equation in agreement
with expert psychologists:

AI ¼
P5

i¼1Ki � DTiP5
i¼1DTi

� n ð2Þ

where i is the number of each action (standing, sitting, lying down,
walking and running) and Ki is the weight of each action, as
reported in Fig. 7, while DTi is the duration of each action and n is
the sleep efficiency. In this study, considering healthy young volun-
teers n = 1. The activity in function of the AI and the psychological
profile is reported in Table 4.

In summary, the input and the output of the fuzzy-logic rule-
based algorithm are reported in Table 5.

According to expert physicians and psychologists, and in agree-
ment with the activity in function of the AI and the psychological
profile reported in Table 4, the fuzzyfication step was performed
according to membership functions (l) and fuzzy sets shown in
Fig. 8. The membership functions of the AI shown in Fig. 8 are re-
lated to the intrinsic motivation psychological profile.

The adopted fuzzy rules of the fuzzy-logic rule-based algorithm
for the inference step, in agreement with expert psychologists, are:
If (LF/HF Ratio is HIGH) And (HR is HIGH)
And (AI is HIGH)
Then (SL is
MEDIUM)
If (LF/HF Ratio is HIGH) And (HR is HIGH)
And (AI is ACTIVE)
Then (SL is
MODERATE)
If (LF/HF Ratio is HIGH) And (HR is HIGH)
And (AI is MODERATE)
Then (SL is
HIGH)
If (LF/HF Ratio is HIGH) And (HR is HIGH)
And (AI is SEDENTARY)
Then (SL is
HIGH)
(continued on next page)
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If (LF/HF Ratio is MEDIUM) And (HR is
HIGH) And (AI is HIGH)
Then (SL is
LOW)
If (LF/HF Ratio is MEDIUM) And (HR is
HIGH) And (AI is ACTIVE)
Then (SL is
MEDIUM)
If (LF/HF Ratio is MEDIUM) And (HR is
HIGH) And (AI is MODERATE)
Then (SL is
MODERATE)
If (LF/HF Ratio is MEDIUM) And (HR is
HIGH) And (AI is SEDENTARY)
Then (SL is
MODERATE)
If (LF/HF Ratio is LOW) And (HR is HIGH)
And (AI is HIGH)
Then (SL is
LOW)
If (LF/HF Ratio is LOW) And (HR is HIGH)
And (AI is ACTIVE)
Then (SL is
LOW)
If (LF/HF Ratio is LOW) And (HR is HIGH)
And (AI is MODERATE)
Then (SL is
MEDIUM)
If (LF/HF Ratio is LOW) And (HR is HIGH)
And (AI is SEDENTARY)
Then (SL is
MODERATE)
If (LF/HF Ratio is HIGH) And (HR is
MEDIUM) And (AI is HIGH)
Then (SL is
MODERATE)
If (LF/HF Ratio is HIGH) And (HR is
MEDIUM) And (AI is ACTIVE)
Then (SL is
MODERATE)
If (LF/HF Ratio is HIGH) And (HR is
MEDIUM) And (AI is MODERATE)
Then (SL is
HIGH)
If (LF/HF Ratio is HIGH) And (HR is
MEDIUM) And (AI is SEDENTARY)
Then (SL is
HIGH)
If (LF/HF Ratio is MEDIUM) And (HR is
MEDIUM) And (AI is HIGH)
Then (SL is
LOW)
If (LF/HF Ratio is MEDIUM) And (HR is
MEDIUM) And (AI is ACTIVE)
Then (SL is
LOW)
If (LF/HF Ratio is MEDIUM) And (HR is
MEDIUM) And (AI is MODERATE)
Then (SL is
MEDIUM)
If (LF/HF Ratio is MEDIUM) And (HR is
MEDIUM) And (AI is SEDENTARY)
Then (SL is
MEDIUM)
If (LF/HF Ratio is LOW) And (HR is MEDIUM)
And (AI is HIGH)
Then (SL is
LOW)
If (LF/HF Ratio is LOW) And (HR is MEDIUM)
And (AI is ACTIVE)
Then (SL is
LOW)
If (LF/HF Ratio is LOW) And (HR is MEDIUM)
And (AI is MODERATE)
Then (SL is
LOW)
If (LF/HF Ratio is LOW) And (HR is MEDIUM)
And (AI is SEDENTARY)
Then (SL is
MEDIUM)
If (LF/HF Ratio is HIGH) And (HR is LOW)
And (AI is HIGH)
Then (SL is
MEDIUM)
If (LF/HF Ratio is HIGH) And (HR is LOW)
And (AI is ACTIVE)
Then (SL is
MEDIUM)
If (LF/HF Ratio is HIGH) And (HR is LOW)
And (AI is MODERATE)
Then (SL is
MODERATE)
If (LF/HF Ratio is HIGH) And (HR is LOW)
And (AI is SEDENTARY)
Then (SL is
MODERATE)
If (LF/HF Ratio is MEDIUM) And (HR is LOW)
And (AI is HIGH)
Then (SL is
LOW)
If (LF/HF Ratio is MEDIUM) And (HR is LOW)
And (AI is ACTIVE)
Then (SL is
LOW)
If (LF/HF Ratio is MEDIUM) And (HR is LOW)
And (AI is MODERATE)
Then (SL is
MEDIUM)
If (LF/HF Ratio is MEDIUM) And (HR is LOW)
And (AI is SEDENTARY)
Then (SL is
MEDIUM)
If (LF/HF Ratio is LOW) And (HR is LOW) And
(AI is HIGH)
Then (SL is
LOW)
If (LF/HF Ratio is LOW) And (HR is LOW) And
(AI is ACTIVE)
Then (SL is
MEDIUM)
If (LF/HF Ratio is LOW) And (HR is LOW) And
(AI is MODERATE)
Then (SL is
MEDIUM)
If (LF/HF Ratio is LOW) And (HR is LOW) And
(AI is SEDENTARY)
Then (SL is
MEDIUM)
In order to obtain the stress level in the range (0–1), the defuzz-
ification step was performed by the average (arithmetic mean),
according to the weights 0.2, 0.4, 0.6, 0.8 for the LOW, MEDIUM,
MODERATE, HIGH outputs respectively. Blind expert clinicians
analysed the input data of the model and autonomously evaluated
the stress levels. The model correctly identifies the stress levels re-
ported by clinicians with percentages of correct classifications of
90.5%, which is a considerable accuracy even if, due to the limited
number of subjects, it should be considered as a preliminary
encouraging result.

7. Conclusions

In this work a flexible automatic mobile pervasive architecture
for the evaluation of individual momentary stress levels was de-
scribed. The architecture is suitable for prolonged stress monitor-
ing during daily activities and it is able to empower the user to
take a more proactive role in stress prevention. Particular attention
was paid to the description of the pervasive architecture and to the
processing methodology. Main features of the architecture are the
wearable sensors for the transduction of heterogeneous physiolog-
ical and behavioral data, the mobile devices and the decision sup-
port system for the detection of momentary stress levels. The
decision process is based on autoregressive modeling, artificial
neural networks and fuzzy-logic rule-based algorithms. High per-
formances in terms of classification of stress conditions were ob-
tained, even if with a limited number of subjects. This simple
and cost-effective architecture could play a key role in fostering a
care model, yet unapplied in clinical care, where each individual
participates to his/her own disease management. This approach
will help to promote prevention, early diagnosis and continuity
of care while reducing workload and costs.
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