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Introduction 

The interactive role of intra-paradigmatic and inter-paradigmatic distributions has 
been investigated in accounting for differential effects on visual lexical recognition for 
both inflected (Milin et al., 2009a, 2009b) and derived words (see Kuperman et al., 
2010; Bertram et al., 2005; Schreuder et al. 2003 among others). In particular, Milin 
and colleagues focus on the divergence between the distribution of inflectional 
endings within a single paradigm (measured as the entropy of the distribution of 
paradigmatically-related forms, or Paradigm Entropy), and the distribution of the 
same endings within their broader inflectional class (measured as the entropy of the 
distribution of inflectional endings across all paradigms, or Inflectional Entropy). They 
conclude that both entropic scores facilitate visual lexical recognition, but if the two 
distributions differ, a conflict arises, resulting in slower word recognition. Similar 
results are reported by Kuperman and colleagues (2010) on reading times for Dutch 
derived words, and are interpreted as reflecting an information imbalance between 
the family of the base word (e.g. plaats in plaatsing) and the family of the suffix (-
ing).  

The difference between Paradigm Entropy and Inflectional Entropy can be 
expressed in terms of Relative Entropy, or Kullback-Leibler divergence (DKL, 
Kullback 1987), as follows:  
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where p(e | s) represents the probability of having a specific inflected form (an 
ending e) given a stem s, and p(e) the probability of encountering e. For any specific 
paradigm being selected, the larger DKL, the more difficult is, on average, the visual 
recognition of members of that paradigm.  

Although these effects are clear in broad outline, no computational models of lexical 
processing we know of have been able to simulate them and bring them down to 
some underlying mechanisms of discriminative learning (Rescorla & Wagner 1972, 
Ramscar & Yarlett 2007, Baayen et al. 2011, Blevins 2016). In the present 
contribution, we show that principles of discriminative learning of symbolic time 
series go a long way in accounting for these effects, thus making an important 
contribution to our understanding of the human lexical processor and its sensitivity to 
word distributions both within and across paradigms. 

Background  

In Temporal Self-Organising Maps (or TSOMs: Ferro et al. 2011; Marzi et al. 2014; 
Pirrelli et al. 2015), a family of neural networks based on Kohonen SOMs (Kohonen 



2001), weights on a layer of temporal inter-node connections encode how strongly 
the currently most highly activated node or Best Matching Unit at time t (BMU(t)) is 
predicted by the BMU(t-1) at the previous time tick. A weight close to 0 on the 
connection between BMU(t-1) and BMU(t) indicates that the activation of BMU(t) is 
unexpected and thus somewhat surprising, given BMU(t-1). A weight close to 1 
means that the activation is highly expected, and thus poorly informative. In TSOMs, 
connection weights are tuned as the result of training the map on input data, 
according to principles of correlative learning that are strongly reminiscent of 
Rescorla & Wagner (1972) discriminative equations. Given the input bigram ‘AX’, for 
example,  

(i) the connection between BMU(‘A’) at time t-1 and BMU(‘X’) at time t is 
strengthened (entrenchment); 

(ii) the connections to BMU(‘X’) from all the other nodes are weakened (competition). 

The interaction between entrenchment and competition accounts for effects of 
context-sensitive specialisation of map nodes for input strings. If the bigram ‘AX’ is 
repeatedly input to a TSOM, the map tends to develop a specialised BMU(‘X’) for ‘X’ 
in ‘AX’ and a highly-weighted outward connection from BMU(‘A’) to BMU(‘X’). Since 
node specialisation propagates through time, a TSOM is thus biased in favour of 
memorising input strings through BMUs structured in a word-tree, as opposed to a 
word-graph (Figure 1).  

  

Figure 1: A TSOM trained on the three mini-paradigms ‘AX’, ‘AY’, ‘BX’, ‘BY’, ‘CX’, ‘CY’ will tend to 
progressively move away from a graph-like allocation of nodes to symbols (left panel) towards a tree-

like allocation (right panel). The extent to which context-sensitive specialisation takes place is a 
function of intra-paradigmatic and inter-paradigmatic word distributions (see main text for details).   

Relative entropy and paradigm learning: an experiment on mini-paradigms 

The relatively simple dynamic expressed by the two learning rules (i, ii) accounts for 
facilitatory effects of paradigm entropy and inflectional entropy on word learning.   

To illustrate, we trained a TSOM on three mini-paradigms, whose forms are obtained 
by combining three stems (‘A’, ‘B’ and ‘C’) with two endings (symbols ‘X’ and ‘Y’). 
Mini-paradigms were administered to the map on six training regimes (R1-R6, see 
Table 1), whose distribution was intended to control the comparative probability 
distribution of ‘X’ and ‘Y’, and the comparative probability distribution of the stems 
‘A’, ‘B’ and ‘C’ relative to each ending. Across regimes 1-3, we kept the frequency 



distribution of X constant (but let it vary across paradigms), while increasing the 
distribution of Y both within each paradigm (R2), and across paradigms (R3). Across 
regimes 4-5, the frequency of Y was held constant, while X frequencies were made 
vary. Finally in R6 all word frequencies were put to 100. Note that, in R3 and R6, p(e 
| s) = p( e ), i.e. the distribution of each inflected form within a  paradigm equals the 
distribution of its ending (given its inflection class). 

Results of the different training regimes are shown in Figure 2, where we plotted 
weights on the connection between stems (‘A’, ‘B’ and ‘C’) and endings (‘X’ and ‘Y’) 
by learning epochs, averaged over 100 repetitions of the same experiment on each 
regime. Results were analysed with linear mixed-effects models, with stem-ending 
connection weights as our dependent variable and the following three fixed effects: 
1) the word probability p(s, e), expressed as a stem-ending combination; 2) the 
probability p(e | s) of a stem selecting a specific ending (or intra-paradigmatic 
competition),  and 3) the conditional probability  p(s | e) of a given ending being 
selected by a specific stem (inter-paradigmatic competition). Experiment repetitions 
were used as random effects. Here, we shortly summarise the main results 
observed. 

  training regimes 

paradigm id items R1 R2 R3 R4 R5 R6 

A #,A,X,$ 5 5 5 5 5 100 

A #,A,Y,$ 5 50 50 333 333 100 

B #,B,X,$ 10 10 10 10 100 100 

B #,B,Y,$ 10 100 100 333 333 100 

C #,C,X,$ 85 85 85 85 850 100 

C #,C,Y,$ 10 100 850 333 333 100 

Table 1: Frequency distribution of mini-paradigms for 6 training regimes. 

 

 
 Figure 2: Developmental trends of connection strength at the stem-ending boundary under different 

training regimes with three mini-paradigms (R1-R6, see Table 1). Weights are plotted against the first 
30 learning epochs.   



Due to entrenchment (rule i), the strength of each connection at the morpheme 
boundary tends to be a direct function of the probability of each word form, or p(s,e) 
(see panel R3). However, other distributions interact with word frequency: 
connection strengths are affected by the probability of each ending p(e), with low-
frequency words that contain high-frequency endings showing a stronger boundary 
connection than low-frequency words that contain less frequent endings (panel R1). 
This boosting effect is modulated by two further interactions: the conditional 
probability distribution p(e | s), with connections to ‘X’ suffering from an increase in 
the probability mass of ‘Y’ (panels R2 and R4), and the competition between words 
selecting the same ending (rule ii), modulated by the entropy of the conditional 
probability distribution p(s | e), or H(s | e) (panels R4 and R5). In particular, if we 
control H(s), i.e. the distribution of paradigms in the input data, the entropy H(s | e) is 
expressed analytically by the following equation: 

 
2)  , 

 
where  is known as Mutual Information. Using the Bayesian 

equality p(s,e) = p(s)p(e|s), we can rewrite equation (2) above as follows: 
 

3)  , 

 
where  is the Kullback-Leibler divergence  

between p(e | s) and p(e) (Eq. 1 above). Equation (3) shows that H(s | e) is 
maximised by minimising the average divergence between the intra-paradigmatic 
distribution p(e | s) of the endings given a stem, and the marginal distribution p(e) of 
the endings. In other words, verb paradigms are learned more accurately by a TSOM 
when, on average, the distribution p(e | s) of the forms within each paradigm 
approximates the marginal distribution of each ending in the corresponding 
conjugation class (compare R4 and R6). This behaviour, accounted for by the 
interaction of entrenchment and competition in discriminative learning, is in line with 
the facilitation effects reported for visual lexical recognition of inflected words and 
reading times of derived words. Besides, the evidence is compatible with more 
extensive experiments on German and Italian verbs (Marzi et al. 2014), showing 
that, for comparable cumulative frequencies, uniform distributions in training data 
(R6) facilitate paradigm acquisition. 
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