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Abstract: The emergence of morphological structure in lexical acquisi-
tion is analysed in the computational framework of Temporal Self-Organ-
ising Maps (TSOMs), to provide an explanatory basis for both psycholin-
guistic and linguistic accounts of lexical parsability. The investigation we 
propose is grounded on the hypothesis that perception of morphological 
structure (parsability) and frequency strongly correlate in the acquisition 
of inflectional paradigms. Analysis of experimental results of word acqui-
sition obtained by artificially varying training conditions, allows us to un-
derstand developmental competition between fully-inflected word forms, 
and to investigate a hierarchy of frequency effects. The computational 
and theoretical implications of such a memory-based view of the relation-
ship between frequency and perception, and its potential to account for 
long-term morphological effects in lexical acquisition are illustrated.

Keywords: inflectional paradigms, morphological structure, token/type 
frequency, word processing.

1.	INTRODUCTION

One of the classical assumptions in the psycholinguistic literature on the men-
tal lexicon is that parsed affixes are associated with independently activated 
access units that tend to spread activation to affix-sharing words, and that acti-
vation levels strongly correlate with the affix productivity (Marslen-Wilson et 
al. 1996; Duñabeitia et al. 2008; Smolík 2010). A number of influential papers 
(Hay 2001; Hay & Baayen 2002; Hay & Plag 2004) suggested that parsability 
criteria strictly interact with frequency to define morphological productivity 
and word structure constraints in the lexicon. For example, the frequency of 
a derivative (e.g. government) relative to its base (govern) is shown to be a 
good predictor for parsability and productivity. The higher the base/derivative 
frequency ratio is, i.e. the higher the frequency of a base relative to the fre-
quency of its derivative, the more likely the morphological structure of the 
latter to be perceived, and the associated affix to be used productively. 

In multiple access models of the morphological lexicon (Burani & 
Laudanna 1992; Baayen et al. 1997), upon presentation of a morphologi-
cally complex word form, both the whole-word and sublexical access units 
compete for activation, as a function of (i) contextual information of recent-



264

CLAUDIA MARZI, MARCELLO FERRO AND VITO PIRRELLI

ly activated access units (as in priming experiments), and (ii) how often ac-
cess units have been activated (token frequency effects). In the absence of 
strong contextual effects, if the frequency of the input word is higher than 
that of its constituent parts, the former is more likely to be accessed as a 
whole. Otherwise, a decompositional access route is preferred. Accordingly, 
the high frequency of an affix determines high rates of decompositional ac-
cess for words containing it, and ultimately ensures the affix productivity. 
Conversely, it is supposed that an affix contained only by words that ac-
cess the whole-word route is unlikely to be productive. Once more, these 
models posit a strong connection between productivity and decompositional 
parsing in perception and processing. 

The correlation between frequency of input forms and perception (or 
lack of perception) of their structure, shows that it is not possible to de-
couple representations from processing operations. Access representations 
in the lexicon may differ exactly because words are differentially processed 
in serial perception and storage. For a word like government to be mapped 
onto two access units (govern and -ment), these units must be perceived 
and stored independently. This does not only imply a parsing stage where 
the input word is split into its parts and mapped onto the corresponding ac-
cess units. It also presupposes a perceptual alignment between the lexical 
representation of government and the representations of other derivatives 
sharing the same affix, for them to be perceived and recoded in terms of 
partially overlapping access units.

The interplay between frequency and perception has been the focus 
of intense investigation in the literature on working memory and the hu-
man ability to recode and retain sequences of linguistic items (e.g. letters, 
segments, syllables, morphemes or words) (Gathercole & Baddeley 1989; 
Papagno et al. 1991; Baddeley 2007). Items that are frequently sequenced 
together are known to be stored in long-term memory as single chunks, 
and accessed/executed as having no internal structure. This increases flu-
ency, eases comprehension and also explains the possibility to retain longer 
sequences in short-term memory when familiar chunks are presented (see 
Cowan 2001, for a detailed overview). Memory processes for serial cogni-
tion are helpful in establishing the explanatory link between the develop-
mental course of word memory traces in the mental lexicon and their or-
ganisation and role in word perception, access and productivity. More inter-
estingly for our present concerns, parts belonging to high-frequency chunks 
tend to resist being perceived as autonomous elements and thus being used 
independently. 

In this paper, we will investigate the computational implications of such 
a memory-based view of the relationship between frequency and percep-
tion, and its potential to account for long-term morphological effects in lex-
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ical acquisition. In particular, we will illustrate how high frequency yields 
the wholeness (lexical entrenchment) effect, why frequently-used words 
compete with members of their own lexical families (inflectional paradigms 
in our present work) and why they hardly participate in larger series of 
morphologically homologous words (e.g. any paradigmatic cell of an inflec-
tional family).

In the computational framework we propose here (Temporal Self-Or-
ganising Maps or TSOMs for short), word processing and lexical acquisi-
tion are implemented as recoding and storage strategies of time-series of 
symbols, dependent on language-specific factors and extra-linguistic cog-
nitive functions such as lexical organisation, lexical access and recall, in-
put-output representations, and memory self-organisation. TSOMs provide 
a general framework for putting algorithmic hypotheses of the processing-
storage interaction to the empirical test of a computer implementation. In 
the ensuing sections, we first outline the general architecture of a TSOM, to 
then focus on a few implications of this view from the perspective of emer-
gent lexical representations and word processing.

2.	TSOMs

In TSOMs (Figure 1, left), a variant of Kohonen’s Self-Organising Maps 
(Kohonen 2001), classical input connections (or what connections) convey-
ing the current input stimulus to each map node are augmented with re-en-
trant Hebbian connections (or when connections) to encode probabilistic ex-
pectations over incoming serial stimuli (Koutnik 2007; Ferro et al. 2010; Pir-
relli et al. 2011; Ferro et al. 2011; Marzi et al. 2012a, 2012b). Connections 
are functional equivalents of neuron synapses, and store weights in the 0-1 
interval, determining the amount of influence that the firing (activation) of 
one node has on another node. Map nodes are fully inter-connected by two 
bundles of Hebbian connections: in-going (or pre-synaptic) connections and 
out-going (or post-synaptic) connections. 

At their core, TSOMs are dynamic memories that are trained to store 
and classify input stimuli through patterns of activation of map nodes, 
also referred to as memory traces. A pattern of node activation is the pro-
cessing response of a map when a stimulus is input. After being trained on 
a set of stimuli, the map learns to respond to similar stimuli with largely 
overlapping activation patterns.1 In the end, a memory trace of a stimulus 
on the map consists in the dynamic, successful processing response of the 
map when the stimulus is shown. 

1   The distance between any two patterns is measured as the mean per-node difference be-
tween their levels of activation (or co-activation distance).
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Figure 1. (Left) Outline architecture of a TSOM.
(Right) BMU activation chain for the input string “#pop$”.

This behaviour unfolds through a short-term and a long-term dynam-
ic. In the short-term, at time t an input stimulus is shown to the map by 
being encoded on the input layer (Figure 1, left). Information propagates 
through what connections to map nodes, which are activated synchronously 
as a function of the strength of connection weights. Meanwhile, the same 
nodes receive re-entrant signals through when connections, propagating the 
level of activation of nodes responding to the immediately preceding stimu-
lus (time t-1). Competition among co-activated nodes is won by the most 
highly activated node, or Best Matching Unit (BMU) at time t. 

Such a short-term activation is followed by a long-term training dynam-
ic. Both what and when connections of the current BMU are potentiated, 
for the latter to be more responsive when the same input stimulus is pre-
sented to the map over again. In addition, weight potentiation spreads to 
neighbouring nodes of the current BMU, so that topologically close nodes 
on a map get increasingly more sensitive to stimuli that are found similar 
on what and when levels of connectivity. At the same time, nodes that are 
not topologically close to the current BMU are inhibited. 

Such a dynamic specialisation has interesting consequences on the way 
words are represented on the map. For a map, words are sequences of sym-
bols, beginning with “#” and ending with “$”, that are shown one after the 
other on the input layer in their left-to-right order. At each time tick, the 
current word symbol activates one BMU and the process is repeated for 
each symbol until the end-of-word symbol (“$”) is reached. The map’s ac-
tivation state is eventually reset upon presentation of a new word (signalled 
by the appearance of “#” on the input layer). 
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An input word thus leaves on a map a temporal chain of consecutively 
activated BMUs, representing the way the word is internally recoded by the 
map. This is shown in Figure 2 (right), depicting an activation chain of 
BMUs after the string “#pop$” is input. It should be noted that two distinct 
(but topologically neighbouring) nodes respond to the two p’s in pop, bear-
ing witness to the process of selective sensitivity to time-bound instances 
of the same symbol type. We consider the implications of this dynamic on 
lexical representations and word processing in the ensuing section. 

3.	LEXICAL REPRESENTATIONS AND PROCESSING

Emergentist, associative views on the morphological lexicon (Bybee 1995, 
2002; Burzio 2004; among others) treat word forms as primitive units and 
their recurrent parts as derivative abstractions over word forms. According to 
this perspective, full forms constitute the basis for morphological processing, 
with sub-lexical units resulting from the application of morphological pro-
cesses to full forms. Morphology acquisition relies on the emergence of the 
relations between fully stored word forms, which are concurrently available 
in the speaker’s mental lexicon and jointly facilitate processing of morpho-
logically-related forms. 

In a network-based interpretation of the associative view (Bybee 1995) 
word forms sharing meaning components and/or phonological/orthographic 
structure are associatively connected with one another, as a function of for-
mal transparency, token frequency, and size of morphological family (type 
frequency). In particular, the strength of lexical connections is affected by 
frequency. High-frequency word forms have greater lexical autonomy: their 
lexical connections with other morphologically related forms are weaker. 
Hence, the strength of a pattern is inversely proportional to the number of 
times a particular sequence of symbols (a full form, a stem or an affix) in-
stantiates the pattern. On the other hand, the strength is directly proportional 
to the number of different word types where the sequence is found. 

Bybee’s network model resorts to two different mechanisms, lexical 
entrenchment and lexical association, to account for the inverse correla-
tion between frequency and lexical productivity. Other symbolic data struc-
tures, such as word trees and word graphs, make use of lexical connec-
tions between consecutively occurring symbols to model both entrenchment 
of individually stored forms and associative relations between concurrently 
stored forms.

In a tree-like representation (Figure 2, top), redundant patterns are rep-
resented by shared chains of connected nodes, where nodes stand for ba-
sic representational symbols (e.g. letters or sounds), and directed (forward) 
arcs link two consecutively occurring symbols.
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Figure 2. tree-like (top) and graph-like (middle and bottom)
representations of four German verb forms.

In a probabilistic interpretation of a word tree, the strength of each con-
nection reflects how often the symbols corresponding to connected nodes 
are seen one after the other in the input data. Hence, a high-frequency form 
tends to develop a chain of strongly connected nodes. The strength of con-
nections defines the level of entrenchment of that form in the lexicon and 
can be interpreted dynamically as the conditional probability with which a 
particular form is expected to occur, when an increasingly longer part of 
the word is perceived. In the tree, word forms belonging to the same para-
digm (e.g. glaubst / glaube / glauben ‘you / I / we-they believe’, and glaubt 
‘he-she believes’) share a chain of nodes representing the common stem. 
The entropy of the forward conditional probability distribution of the paths 
branching out of the same stem is a measure of the level of indecision be-
tween possible alternative continuations of the same stem, and ultimately 
reflects the amount of structure shared by the forms belonging to the same 
paradigm. 

A more compact representation of the same set of word forms is pro-
vided by word graphs (Figure 2, middle). Whenever possible, word forms 
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of the same paradigm share part of the suffix nodes (e.g. glaube ‘I believe’, 
and glauben ‘we/they believe’, or glaubst ‘you believe’, and glaubt ‘he-she 
believes’). The structure allows any node to be reached by more forward 
connections at the same time. This produces a considerable reduction in the 
number of nodes needed to represent morphologically-related forms. The 
entropy of the backward conditional probability distribution of all paths 
branching into the same ending is thus proportional to the number of word 
forms that share the ending, and ultimately reflects the level of common 
structure shared by sets of paradigms (conjugation classes).

Word trees and word graphs need not be considered as mutually exclu-
sive data structures. Figure 2 (bottom) shows a somewhat intermediate data 
structure, representing activation chains on a map, with squares represent-
ing BMUs, and arcs representing connections between consecutively ac-
tivated BMUs. In previous work (Marzi et al. 2012a, 2012b, 2012c), we 
showed that the extent to which TSOMs organise morphologically-related 
words through either word trees or word graphs depends on the degree of 
probabilistic support received by the network of long-term associative rela-
tions among all stored word forms. High-frequency forms are more likely 
to be represented as word trees, with little or no sharing of recurrent end-
ings with other word forms. Conversely, low- and medium-frequency forms 
have a tendency to share endings. Evenly-distributed word frequencies are in 
fact translated into evenly-distributed weights over temporal connections, i.e. 
into unbiased (more uniform) expectations over a wider range of possible 
graph continuations. By analogy to forward and backward probability dis-
tributions, the entropy of the distribution of (normalised) weights over post-
synaptic (i.e. branching-out) and pre-synaptic (i.e. branching-in) connections 
gives a measure of the level of co-activation among forms belonging to the 
same paradigm (e.g. gibt and gibst), and among forms selecting the same 
ending in different paradigms (e.g. machen and finden) respectively.

TSOMs can thus simulate memory-based, self-organisation processes 
leading to acquisition of a graded composition of tree-like and graph-like 
data structures, as a function of degrees of memory entrenchment. They are 
in line with theoretical models of emergent lexical organisation (e.g. Bur-
zio 2004) and neuro-functional architectures of the language processor (e.g. 
Catani et al. 2005) that blur the distinction between storage and computa-
tion, along with the dichotomy between morphological representations and 
morphological rules (Bates & Goodman 1997, 1999). In fact, morphologi-
cal representations are determined by probabilistically recurrent processing 
strategies cached in long-term memory.

In TSOMs, concurrently stored forms compete for the same pool of 
memory nodes due to the interplay of several factors: (i) number of avail-
able memory nodes (relative to the number of input words); (ii) wordlike-
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ness of input words; (iii) token frequency of input words; (iv) plasticity of 
the map. When a wordlike input, i.e. a sequence of symbols that is found 
in (many) other words in the lexicon (Bailey & Hahn 2001), is shown to 
a map, it will fail to develop an exclusively dedicated chain of nodes, due 
to the amount of shared formal redundancy. At the same time, if an input 
word is not wordlike, it is more likely to activate a dedicated node se-
quence. Finally, plasticity defines the map’s readiness to adjust connection 
weights. During training, the map loses its plasticity, so weights are adjust-
ed less and less adaptively as training progresses (for a detailed description 
of temporal layer plasticity and long-term potentiation mechanisms see Pir-
relli et al. 2011; Marzi et al. 2012a). 

In this perspective, co-activation of the same BMUs by different input 
words reflects the extent to which the map perceives surface morphologi-
cal relations between fully-stored words, and represents, at the same time, 
a logical precondition to morphological generalisation. Perception of sur-
face morphological relations presupposes that the map can coactivate al-
ready stored, recoded representations of morphologically-related input 
words. Morphological generalisation, on the other hand, describes the pro-
cess whereby a novel form (e.g. a yet unknown inflected form of a known 
lexical exponent) is recoded on the basis of activation of other forms. The 
more morphological relations are perceived, the better the knowledge of a 
map, and the more likely the resulting generalisations will be.

4.	FREQUENCY AND THE DYNAMIC OF PARADIGM 
	 ACQUISITION

The time course of lexical acquisition is known to be affected by several fac-
tors, ranging from word length, word frequency and time of acquisition, to 
wordlikeness and perceptual salience. In particular, token frequency is un-
derstood to facilitate lexical access and correlate negatively with response 
latencies in visual lexical decision (Taft & Forster 1975; Whaley 1978). 
High-frequency words tend to be acquired earlier and this may later impact 
on lexical tasks due to loss of plasticity (Ellis & Morrison 1998; Zevin & 
Seidenberg 2002). High token frequency is traditionally understood to pro-
tect irregulars from regularisation effects through time (Bybee 1985, 1995; 
Corbett et al. 2001), and to leave deeply entrenched memory traces in the 
mental lexicon (Alegre & Gordon 1999; Baayen et al. 2007). Accordingly, 
high-frequency word forms can be learned by rote and tend to show great-
er lexical autonomy, even from other members of their own paradigms (see 
Bybee 1995), thus weakening their lexical connections with shared morpho-
logical schemata. This explains the salience of a whole relative to its parts 
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in high-frequency morphologically complex words (Hay & Baayen 2002) 
and lack of productivity and overall resistance to change of affixes embed-
ded in high-frequency words (Bybee 1985, 1995; Hay 2001; Corbett et al. 
2001). Finally, recent evidence has shown the role of frequency distributions 
in morphological families. Uniform frequency distributions over members of 
the same inflectional paradigm (measured in terms of inflectional entropy) 
make members more readily accessible (Moscoso et al. 2004a), favouring a 
better allocation of memory resources.

All this evidence appears to support a view of the mental lexicon as a 
dynamic integrative system, whereby words are concurrently, redundantly 
and competitively stored. The main consequences of such a view are clear 
in broad outline, but some of their implications have been questioned on 
several grounds, especially in connection with the role of frequency factors 
in affecting acquisition of regular and irregular paradigms. Furthermore, no 
existing model of lexical processing can account for all these facts. 

For associative, connectionist models of lexical memory, all inflected 
lexical items should be sensitive to token frequency, irrespective of their 
degrees of inflectional regularity (Plunkett & Marchman 1993; McClel-
land & Patterson 2002; Bybee 1985; 1995; 2002). The only difference be-
tween more and less regular inflectional classes is accountable in terms of 
frequency and, ultimately, memory effects (Ellis & Schmidt 1998). Stems 
are regular if they show up in many paradigm cells, and endings are pro-
ductive if they are found in a large family of forms instantiating the same 
paradigm cell. Productivity, in both cases, is governed by type frequency, 
or, equivalently, by the size of the relevant word family. Finally, acquisi-
tion and productivity are both favoured by wordlikeness, i.e. by the extent 
to which a form is perceived as similar to other forms in the lexicon. Ac-
cordingly, endings are generalised more easily if they are used in paradigms 
with a high family resemblance. 

On the contrary, dual mechanism models (Pinker 1999; Pinker & Ul-
lman 2002) assume that regular forms are computed on-line, and should 
thus be insensitive to both token and type frequency effects. Similarly, reg-
ular endings are categorically distinct from other morphological processes. 
They tend to be mastered earlier than irregular endings, and are typically 
applied (and possibly over-applied) in an all-or-none fashion, with no cor-
relation with type frequency effects. A logical implication of these two as-
sumptions is that acquisition of a regular inflectional paradigm should be a 
sudden event: once its stem/root is committed to memory and the relevant 
endings are mastered, all its members should be acquired instantaneously. 
This is also true of any regular inflectional ending, which is generalised 
neither as a function of the number of words where it is found, nor on the 
basis of their degree of family resemblance. On the other hand, irregular 
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paradigms are expected to be acquired in a piecemeal, item-based fashion 
and should thus be sensitive to cumulative token frequency effects in ac-
quisition accuracy. In the end, irregular inflections are rarely generalised. If 
they can be generalised at all, this is caused by formal resemblance.

For such a complex range of issues to be settled, psycholinguistic evi-
dence is simply not enough. Investigating the dynamic interaction between 
type and token frequency in overlapping patterns of lexical activation that 
evolve with time requires careful control of all the quantitative variables 
involved, with little if any change in the range and nature of the lexical 
data used for training. This is virtually impossible to obtain in longitudi-
nal studies or through experimental protocols involving human subjects. 
Computer modelling is useful in this connection for several reasons. First, 
it allows direct manipulation of frequency and timing of exposure to word 
stimuli that are directly controlled under possibly artificial training condi-
tions. Second, it implements an explicit model of memory and acquisition 
that allows differential effects of various training conditions to be observed 
and assessed quantitatively. Finally, it provides a truly explanatory model 
of the evidence observed, as this evidence is the replicable outcome of the 
dynamic interaction of a few basic processing principles.

4.1	 The role of input frequency

To address issues of frequency – both token and type frequency – and develop-
mental acquisition, we ran a series of simulations, designed to investigate the 
interconnection between time of acquisition, frequency distribution and regu-
larity of inflectional paradigms.

We selected from celex (Baayen et al. 1995) the top 50 high-frequency 
German verb paradigms (34 irregular/strong paradigms and 16 regular/weak 
paradigms). From each paradigm, 15 inflected forms were extracted: the full 
set of present indicative (6) and präteritum (6) forms, the past participle, the 
infinitive and the present participle. All 750 forms were encoded as strings 
of letters, starting with “#” and ending with “$”. All letters were encoded on 
the map’s input layer as mutually orthogonal binary vectors. Each input word 
was administered to a 40 x 40 nodes map one letter at a time, with memory 
of past letters being reset upon presentation of the start-of-word symbol “#”. 

To factor out frequency effects and assess the role of frequency dis-
tributions vs. absolute frequencies, we trained identical maps on the same 
dataset administered under two distinct regimes. In one training regime, 
input forms were repeatedly presented to the map as a function (into the 
1-1001 range) of their frequency distribution in celex, for a total number of 
10,286 token presentations per learning epoch (skewed training protocol). 
In the second training regime, the same set of input forms were shown to 
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the map 5 times each, for a total number of 3,750 presentations per epoch 
(uniform training protocol). In both regimes, the order of word presentation 
was randomised and results were averaged over five instances of the same 
map trained under each training regime for 100 epochs. 

We tested the two groups of maps (hereafter referred to as skewed 
maps and uniform maps) on the task of word recall, and compared their 
behaviour through the time course of lexical acquisition. Word recall simu-
lates retrieval of a sequence of letters by letting the map go through a BMU 
activation chain such as the one for pop illustrated in Figure 1 (right), and 
iteratively output, at each time tick, the symbol associated with the current 
BMU. A BMU at time t is calculated by overlaying the activation chain 
with the expectations of the BMU at time t-1, propagated through when 
connections only (i.e. in the absence of any stimulus presented on the input 
layer). The process is iterated until a “$” is output. 

Errors occur when the map misrecalls one or more symbols in the input 
string, by either replacing them with different symbols o by outputting cor-
rect symbols in the wrong order. Partial recall, i.e. the correct recall of only 
a substring of the target word (e.g. “#GEBEN$” for “#GEGEBEN$”), is 
counted as an error as well. 

The incremental time course of word acquisition for the two groups of 
maps is plotted in Figure 3 (top). For any word form, we define its time of 
acquisition as the first epoch starting from which the form is recalled cor-
rectly. Unlike word recognition, which mostly depends on the current in-
put stimulus, word recall depends on internal recoding only, and requires 
that fine-grained information about nature and timing of the letters making 
up the word is stored in the internal state of the map. The plot shows how 
many words are acquired per learning epoch, as a percentage of all input 
words. Counts are averaged over five map instances for each training con-
ditions, with standard deviation represented by whiskers. Clearly, results 
are shown by both word types and word tokens for skewed maps only.

As a general trend, skewed maps are found to acquire word types more 
slowly than uniform maps2, particularly in the 12-20 epoch range, suggest-
ing that there is a statistically significant advantage (p<.001 at epoch 20) 
in having all forms presented an equal number of times during training. As 
the training algorithm minimises the probability for a map to make a rec-
ognition error, a map trained on skewed distributions will tend to acquire 
the most frequent forms first, thereby neglecting less frequent ones. This 
is shown by the mean frequency of correctly recalled forms at each ep-
och (Figure 3, bottom), and by the statistically significant inverse correla-

2   The advantage is significant even when we compare those word forms only that are pre-
sented an equal number of times (5) in both training conditions.
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tion (p<.005) between word token frequency and epoch of word acquisition 
by skewed maps. Since top-frequency words are not necessarily the most 
wordlike in the training set (i.e. the most similar to the majority of words), 
recruitment of memory resources for storing high-frequency items may ef-
fectively slow down lexical acquisition overall. 
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Figure 3. (top) The time course of lexical acquisition (recall accuracy) on uniform maps 
(thick solid line) vs. skewed maps for both type counts (thin solid line) and token counts 

(dashed line). (bottom) Average frequency of correctly recalled words by learning 
epochs for the skewed training regime.

Notably, paradigm regularity is observed to interact with word token 
frequency. Maps do not memorise words in isolation but in formally-
related word families. The impact of word token frequencies on the time 
course of lexical acquisition thus varies depending on the comparative 
amount of formal redundancy shared by input words. As shown in Figure 
4 (top), the overall growth rate of German word tokens is mostly due to 
words in irregular (top panel) rather than regular (bottom panel) paradigms. 
The statistically significant correlation between token frequency and word 
learning epoch for the whole dataset increases in significance (p<.001) for 
words in irregular paradigms. On the other hand, acquisition of words in 
regular paradigms is less affected by word token frequency (statistically 
non-significant correlation). The advantage of having word forms presented 
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more often to a map thus appears to diminish in regular paradigms, where 
lexical acquisition has a quicker time course, as confirmed by the steeper 
rate of acquisition of regular word types, compared with irregular word 
types, in the 12-20 epoch range. 

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

learning epochs

re
ca

ll 
ac

cu
ra

cy
 (i

rre
gu

la
rs

)

uniform distribution
skewed distribution (tokens)
skewed distribution (types)

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

learning epochs

re
ca

ll 
ac

cu
ra

cy
 (r

eg
ul

ar
s)

uniform distribution
skewed distribution (tokens)
skewed distribution (types)

Figure 4. the time course of word acquisition (recall accuracy) of irregular (top) and 
regular paradigms (bottom) in uniform maps (thick solid line) vs. skewed maps for both 

type counts (thin solid line) and token counts (dashed line).

This can be interpreted once more as a memory effect, since regularity 
and type frequency are highly correlated in the lexicon. Regular morpho-
logical patterns are systematically repeated both intra- and inter-paradig-
matically thus being found in many different word types. Irregularly-inflect-
ed forms, conversely, are more isolated across paradigm cells and are more 
dependent on word token frequency. In this context, an interesting related 
issue is whether there is a direct connection between the time course of 
word acquisition and the time course of paradigm acquisition.

To answer this question, for each paradigm we define its time of ac-
quisition as the mean acquisition epoch of all forms belonging to the para-
digm. The paradigm acquisition epoch provides an estimate of the average 
time it takes for all forms of the paradigm to be recoded in a time-sensitive 
way, for them to be recalled accurately from their corresponding activation 
chains. In Figure 5 (left), we plotted the acquisition epoch of each German 



276

CLAUDIA MARZI, MARCELLO FERRO AND VITO PIRRELLI

verb paradigm over both training conditions: skewed (black circles) and 
uniform (white circles). On the vertical axis, paradigms are arranged by in-
creasing acquisition epochs in the skewed training regime, with cumulative 
paradigm token frequencies shown in brackets. The right-hand regression 
plot in Figure 5 shows a statistically significant inverse correlation (p<.0005) 
between cumulative paradigm frequencies (on a logarithmic scale) and the 
epoch of acquisition of paradigms in the skewed training regime. This seems 
to suggest that paradigms, like words, are acquired by (cumulative) token 
frequency of their members. In particular, paradigms with low token fre-
quency members are more difficult to acquire, as memory takes time. But 
the overall picture is considerably more complex than this.

We can understand more of this dynamic if we compare the acquisition 
rate of the same paradigms in the two training regimes by looking at the 
spread between paradigm learning epochs in uniform and skewed training 
regimes (respectively white and black circles in Figure 5, left). 
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paradigm learning time over paradigm token frequency (on a log scale).
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First, the actual timing of paradigm acquisition appears to depend more 
on relative frequencies than on absolute frequencies. The vast majority of 
paradigms are acquired earlier in a uniform training regime (p<.005) than 
when they are presented with skewed frequencies. In addition, word forms 
in each paradigm are acquired at a quicker rate when they are distributed 
uniformly: the number of epochs it takes to complete the acquisition of 
a paradigm after the first member of the paradigm is acquired (or para-
digm acquisition span) is significantly shorter in uniformly-trained maps 
(p<.005). 

A notable exception to this general trend is represented by a few highly 
irregular paradigms (e.g. sein ‘be’, werden ‘become’) that are presented in 
training with high cumulative token frequencies. This evidence points to a 
nontrivial interaction between frequency and (ir)regularity. In highly-irregu-
lar paradigms with extensive unpredictable stem alternation, relatively iso-
lated stems are acquired in a piecemeal fashion. Unlike widely-distributed, 
more predictable stems, alternating stems are found in fewer cells of the 
paradigm (and in some cases in one cell only) and can take little (or no 
advantage) of cumulative frequency effects across cells. High token fre-
quency can tip the balance in favour of early memorisation, allowing ir-
regular stems to successfully offset their low type frequency. This is what 
happens with sein ‘be’ and werden ‘become’. In medium to low frequency 
irregular paradigms, however, this is more difficult to happen, and piece-
meal memorisation takes longer to set in. This memory effect also explains 
why, in the skewed training regime, the significant (inverse) correlation be-
tween paradigm token frequency and learning epoch is limited to irregular 
paradigms, while losing significance with regular paradigms (Figure 6). To-
ken frequency effects are more hardly detectable when it comes to acquisi-
tion of regular paradigms, simply because predictable stems systematically 
appear in different forms of the paradigm and can take advantage of their 
cumulative frequency.

It remains to be understood, however, why uniform distributions deter-
mine a clear advantage in time of acquisition, and why the advantage is 
unevenly apportioned between regular and irregular paradigms, as shown 
in Figure 7. To shed light on this global interaction, we have to look at 
the way (ir)regularity and frequency affect the developmental dynamic of 
memory organisation. The variable patterns of connectivity between recruit-
ed nodes, their levels of competition and co-activation on the map can give 
explanatory insights into the time course of paradigm acquisition and into 
degrees of perception of structure in the morphological lexicon. From this 
fine-grained perspective, morphological structure can be investigated as the 
emergent property of a densely interconnected pool of nodes, whose global 
behaviour is governed by local patterns of connectivity. 
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Figure 6. Regression of paradigm learning time over paradigm token frequency (on a log 
scale) for regular (left) and irregular (right) paradigms.
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Figure 7. Acquisition time of regular (left) and irregular (right) paradigms

ranked by increasing learning epoch for skewed (black circles)
and uniform distributions (white circles). 



279

MORPHOLOGICAL STRUCTURE THROUGH LEXICAL PARSABILITY

4.2	 The dynamic of paradigm acquisition

We already showed (Figure 3, bottom) that maps trained on realistically-dis-
tributed data tend to acquire the most frequent word forms first. This is par-
ticularly evident in early learning epochs, when individual forms are learned 
by rote, and the relations between stored word forms are still to emerge. 
Such an early advantage in word acquisition is carried over unevenly to par-
adigm acquisition as training progresses (Figure 5 right, and Figure 6): the 
strong inverse correlation between paradigm frequency and time of acquisi-
tion holds for irregulars (r=-.60, p<.0005, see Figure 6, right), but gets weak-
ened and statistically not significant with regular paradigms. In addition, this 
evidence should be contrasted with the rate of paradigm acquisition by maps 
trained on uniform distributions (white circles in Figure 5, left). When words 
are administered to a map an equal number of times, paradigms are learned 
consistently earlier (earlier learning epoch) and more quickly (shorter learn-
ing span) than when words are input following skewed distributions. Final-
ly, although regular paradigms are, on average, acquired more quickly than 
irregular paradigms, they are also less sensitive to differences in frequency 
distributions: the advantage of having paradigms shown with a uniform dis-
tribution (as opposed to a skewed distribution) is considerably smaller when 
a paradigm is regular.

We suggest that this behaviour is due to the interplay of three factors. 
First, as observed in the previous section, regular paradigms are formally 
highly redundant families, where an invariant stem is shared by all para-
digm members. Secondly, in our training set regular paradigms tend to be 
more wordlike than irregular paradigms, meaning that they exhibit signifi-
cantly more typical (i.e. shared by many word types) word-internal chunk 
types (trigrams) than irregular paradigms do (p<.0005). It is easier for word 
forms in a regular paradigm to find many other similar forms in the training 
set, and this is an important prerequisite for knowledge of an inflectional 
paradigm to be transferred (generalised) to another paradigm.3 Finally, uni-
formly-trained maps are able to better organise stored words in a deeply 
interconnected network of associative relations, where more nodes share in-
formation through distributed patterns of comparatively poorly entrenched 
connections. Conversely, high-frequency entrenchment favours individual 
access and holistic perception, and disfavours co-activation (i.e. spreading 
of activation to other neighbouring/similar forms) and perception of internal 
structure. 

3   This is confirmed by a significant inverse correlation (r=-0.64, p<.0001) between para-
digm wordlikeness and paradigm acquisition span. That regular paradigms distribute more 
diffusely in the similarity space of the German verb system also accounts for their apparent 
insensitivity to strong family resemblance effects.
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Due to the interplay of these factors, we conjecture that the across-the-
board acquisitional advantage of uniformly-trained maps is a processing 
effect. Maps are quicker learners of uniformly-distributed data simply be-
cause they get more sensitive to patterns of morphological redundancy and 
are more prone to transfer this knowledge across paradigms. In other words, 
they are better at generalising knowledge. The advantage between uniform 
distributions and skewed distributions is less evident in regular paradigms 
since they are easier to generalise than irregular paradigms in the first place.

To verify sensitivity to morphological redundancy, i.e. evidence of percep-
tion of morphological structure by our maps, it is useful to turn back to the 
lexical representations of Figure 2. The defining feature of tree-like structures 
(Figure 2, top) is that each memorised word form selects its own distinct end-
ing, with no single node being reached by more than one in-going arc. This 
amounts to a holistic representation of a word in the lexicon, where the back-
ward probability of finding an in-going arc given a node is always equal to 
unity. High-frequency words tend to be represented holistically by a map. 

In word graphs, the same probability is a function of the number of 
word paths sharing that node. To estimate the perception of shared structure 
by a map, we can measure, for each node, the entropy of the distribution of 
(normalised) weights over its in-going (pre-synaptic) connections, i.e. how 
likely it is for that node to be reached by any activation chain where it be-
longs. If a node is strongly selected by one particular chain and weakly se-
lected by other chains, pre-synaptic connection entropy goes down. On the 
other hand, uniformly-distributed, formally-related words showing a regu-
lar morphological pattern tend to share overlapping node chains, and to be 
densely interconnected with other chains through highly-entropic bundles of 
pre-synaptic connections. The plot in Figure 8 shows a significantly higher 
level of pre-synaptic entropy (p<.0005 starting from learning epoch 12) for 
any node in uniform maps when compared with skewed maps.
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Figure 8. Averaged entropy of weights on pre-synaptic connections on both skewed

(thin line) and uniform (thick line) maps.
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We also evaluated the distribution of weights on pre-synaptic connec-
tions of nodes that initiate an inflectional ending, i.e. connections crossing 
a morpheme boundary. We observe no significant difference for the two 
training regimes when considering morpheme boundaries in low frequency 
word forms only (i.e. words administered with a token frequency < 5 in 
the skewed training regime). Statistical significance progressively rises for 
word sets of increasing token frequencies (Table 1), as shown in Figure 9 
for high-frequency forms (token frequency>50).
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Figure 9. Averaged entropy of weights on pre-synaptic ending connections

for highly-frequent forms on skewed maps (thin line)
and for the same words on uniform maps (thick line).

Finally, the strength of connection weights between node chains shows 
a reversed pattern in the two training regimes (Figure 10). This is intuitive-
ly obvious, as connection weights represent a map’s expectation over in-
coming symbols: more deeply entrenched words should thus correlate with 
stronger expectations.

Figure 10. Averaged strength of connections for highly-frequent forms on skewed maps 
(thin line) and for the same words on uniform maps (thick line).
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Once more, statistical significance progressively rises for word sets of 
increasing token frequencies (see Table 1). In fact, map connections are 
known to inhibit each other inter-paradigmatically due to entrenchment 
(Marzi et al. 2012b): if a suffix node chain is frequently activated by a 
given stem, it will be far less activated by another stem (in the limit, the 
strength of all other connections goes down to nil).

ending in-going entropy connection strength

f
th

f < f
th

f > f
th

f < f
th

f > f
th

5 no statistical 
difference U>S (p<.005) U>S (p<.001) U<S (p<.0005)

10 no statistical 
difference U>S (p<.005) U>S (p<.001) U<S (p<.00005)

50 U>S (p<.05) U>S (p<.0005) U>S (p<.05) U<S (p<.00005)

100 U>S (p<.05) U>S (p<.00005) no statistical 
difference U<S (p<.00005)

Table 1. Statistical significance of the difference in ending in-going entropy and 
connection strength between uniform (U) and skewed (S) maps for varying frequency 

thresholds. levels of entropy and connection strenght on skewed maps are calculated 
for words whose frequency (f) falls below (f < f

th
) or above (f > f

th
) a given frequency 

threshold f
th

, and compared with the corresponding values of the same words on 
uniform maps. U>S means that values are significantly greater for uniform maps, U<S 

means that they are significantly smaller. p-values are given in parentheses.

All these factors suggest that uniform maps are quicker learners 
because they are better at generalising knowledge. This is more apparent 
for regular paradigms because they are less sensitive to token frequency 
effects and easier to generalise due to both their internal formal consistency 
(stem invariance) and their greater similarity to other paradigms 
(wordlikeness). To test the capacity of TSOMs to make generalisations, 
we checked their accuracy in recalling 50 unknown members of known 
paradigms in the two training regimes. Accuracy scores by learning epochs 
are reported in Figure 11, showing a significantly better performance by 
uniform maps, particularly in the 12-20 epoch range.

As an example of the interaction between frequency, regularity and 
acquisition, the plots in Figure 12 depict the learning time course of 
three German (sub)paradigms (brauchen ‘need’, wollen ‘want’ and sein 
‘be’) exhibiting different degrees of inflectional (ir)regularity. In the 
regular brauchen, a uniform distribution (white circles in the left panel of 
Figure 12) appears to favour (i) earlier acquisition epochs than a skewed 
distribution does (black circles), and (ii) a short (2 to 3 epochs) acquisition 
span. When it comes to an irregular paradigm like sein, the pattern is 
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reversed. Since stems may vary across paradigm cells, acquisition is 
controlled by rote memorisation of individual forms. As a result, we 
observe a statistically significant (p<.05) advantage for acquisition in 
the skewed training regime (black circles in the right panel of Figure 12) 
than in a uniform training regime (white circles, same panel), a longer 
acquisition span than the one of brauchen, and a strong correlation 
(r=-.825, p<.05) between learning time and stem-alternant cumulative 
frequencies. In fact, sein offers an example of a low-entropy irregular 
paradigm, where suppletive stems are found in high-frequency forms. 

The irregular paradigm of wollen (Figure 12, middle panel) represents 
an intermediate case between the previous two, where a relatively isolated 
stem like will can use its higher frequency to offset the prevalence of woll. 
As a result, there is no significant effect of either type or token frequency 
distributions.
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Figure 11. The time course of word generalisation by uniform maps (thick line) and 
skewed maps (thin line) maps.
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5.	GENERAL DISCUSSION AND CONCLUDING REMARKS 

Frequency reverberates on all levels of lexical organisation. There are fre-
quency effects for individual words (token frequency effects), as well as 
frequency effects above the word level (cumulative token frequency effects 
for word families such as inflectional paradigms), and below the word level 
(both intra- and inter-paradigmatic type frequency effects yielding sublex-
ical patterns). This defines a hierarchy of frequency effects, which has far 
reaching consequences on the time course of lexical acquisition. 

It should be appreciated that what favours acquisition on one hierarchi-
cal level can be a detrimental factor on another level. This is due to the ef-
fects of frequency on memory entrenchment, and to the effects of entrench-
ment on the emergence of relations between stored word forms.

High-frequency words are learned more quickly, and this is also true 
of high-frequency paradigms in general. However, regular paradigms are 
less affected by token frequency, as they can rely on the cumulative boost 
of type frequency. In addition, a uniform training condition tends to speed 
up acquisition of paradigms, with the only exception of a handful of high-
frequency highly irregular paradigms, which are learned significantly faster 
in the skewed condition. Most of these are memory effects, reflecting the 
well-known correlation between (high) frequency and entrenchment. But 
some of them are not. For example, the across-the-board acquisitional boost 
provided by uniform training to regular as well as irregular paradigms is 
more reminiscent of a processing effect than a memory by-product. 

Our experimental results show that in a low-entropy inflectional para-
digm, high-frequency forms are learned at early epochs, followed by a few 
low-frequency forms that can benefit from early-acquired forms by “para-
sitically” exploiting the activation chains developed by their high-frequency 
paradigmatic counterparts. This appears to speed up the rate of acquisition 
of high-frequency and some low-frequency words of the same paradigm at 
early epochs, but it eventually delays acquisition of the entire paradigm, 
since early entrenchment and loss of plasticity disfavour later generalisa-
tions. 

Generally speaking, high-frequency forms tend to be isolated both with-
in their own paradigm and from other paradigms, and this keeps their mor-
phological information from being readily spread. In a TSOM, this has a 
strong impact on developing biased expectations. intra-paradigmatically, 
high-frequency words develop entrenched, tightly connected node chains, 
building up a strong expectation for few endings only. Other alternative 
endings are thus disfavoured, and the propensity of the map to acquire 
both low-frequency and novel endings goes down. Inter-paradigmatically, 
deeply entrenched node chains share very little of their information with 
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other chains, thus preventing words of other paradigms from taking advan-
tage of this information through shared connections. Conversely, uniform 
frequency distributions over members of the same inflectional paradigm 
(highly entropic paradigms) make members more readily accessible. Thus, 
less biased expectations favour global (paradigm-based) acquisition.

All of this makes an important connection with issues of perception of 
sublexical structure and morphological parsability. Entrenched lexical rep-
resentations resist being perceived as morphologically complex. We con-
tend that perception of morphological structure has to do with informa-
tion sharing and high co-activation levels between word forms. A suffix is 
parsed/perceived as an independent element when many words share it, and 
this happens whenever many low-weighted, pre-synaptic connections lead 
to the same suffix, i.e. when many competing chains share it. On the con-
trary, a deeply entrenched chain is poorly interconnected with other chains 
and hardly co-activates them. High entropy levels over weighted pre-syn-
aptic connections are thus conducive to perception of structure and to the 
emergence of morphological relations, and, ultimately, to acquisition of in-
flectional paradigms. 

Symbolic and sub-symbolic views on morphological structure are clas-
sically implemented as combinatorial, rule-based models (e.g. Pinker & 
Prince 1988) and probabilistic associative models (e.g. Rumelhart & Mc-
Clelland 1986) respectively. Morphology is viewed by the former as a com-
binatorial system of entries and rules, where regular word forms (unlike ir-
regulars) are not memorised in the lexicon, but produced on-line. For the 
latter models, morphological structure is conceptualised as a non-discrete, 
epiphenomenal by-product of input-output mapping, irrespective of de-
grees of morphological regularity. In section 4, we examined the contrast-
ing predictions made by the two accounts about the role of frequency and 
formal resemblance on the acquisition of regular vs. irregular inflectional 
paradigms, with each account predicting only part of the psycholinguistic 
evidence available. 

But another view appears to suggest itself. There is converging evi-
dence of a graded, highly distributed view of morphological structure as 
an emergent property of lexical self-organisation. The view assumes that all 
word forms are memorised in the lexicon, thus making no distinction be-
tween a uniquely stored base form and all other non-base forms, which are 
processed on-line, in both recognition and production (see Baayen 2007, 
for an overview). In addition, to capture the fact that words encountered 
frequently exhibit different lexical properties from words encountered rela-
tively infrequently, any model of the mental lexicon must assume that ac-
cessing a word in some way affects the access representation of that word 
(Foster 1976; Marslen-Wilson 1993; Sandra 1994; among others). 
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We showed that the tight connection between frequency, parsability and 
acquisition can be accounted for in terms of a self-organising model of se-
rial cognition that blurs the distinction between memory (representations) 
and processing (operations defined over representations). Although our ex-
perimental results are grounded on storage of full forms, the emergent mor-
phological organisation crucially relies on bound morphological constituents 
(stems and affixes), as opposed to full forms, and presupposes a level of or-
ganisation of memorised words into probabilistically connected sublexical 
parts. This seems to us a necessary step to take in analysing those languages 
whose morphology (unlike English morphology) is stem-based rather than 
word-based. In addition, it is an interesting by-product of our analysis that 
the explanatory notions we developed (e.g. entrenchment, information shar-
ing, expectation and co-activation) meet recent psycholinguistic evidence on 
the role of frequency distributions in the perception of lexical relatedness by 
human speakers (Hay & Baayen 2002, 2005; Moscoso et al. 2004b).

The lexical structures developed by temporal self-organising maps nei-
ther amount to a full (hierarchical) listing of stored word forms (of the sort 
typically provided by a tree-like structure, as sketched in Figure 2, top), 
nor define redundancy-free, maximally compressed lexical representations 
(such as word graphs, Figure 2, middle). Each node is fully connected with 
any other node of the map. At the outset, weights are randomly distributed 
over connections. After training, the final amount of interconnectivity (de-
fined by the adjustment of weights on each connection) is the graded re-
sult of the probabilistic support received by the map from a training set of 
unevenly distributed word forms, which exhibit different degrees of mor-
phological redundancy. As connection weights can take any real value in 
the 0-1 interval, perception of structure at morpheme boundaries is graded 
by definition, ranging from no connection to fully dedicated connections. In 
this perspective, the overall structure of a self-organised lexicon is the end 
result of a graded composition (of the sort depicted in Figure 2, bottom) of 
tree-like and graph-like structures, which are taken to be somewhat limiting 
cases in the perception of lexical items.

An important consequence of this notion of graded structure is that it 
makes the distinction between memorisation and processing a matter of 
degree. Irregulars are known to be learned by rote because the process of 
storing them can hardly take advantage of knowledge of already stored 
words. This makes storage of irregulars acutely sensitive to token frequen-
cy effects. Memorising regulars, on the other hand, is often the end result 
of using past knowledge of already stored items and can thus be concep-
tualised as the outcome of a generalisation step, based on structure shar-
ing and co-activation. Storing an item by generalisation is not sensitive to 
its token frequency but it has a distinctive processing quality: it depends 
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on the local propensity of the item to be generalised (its wordlikeness); on 
the global propensity of the map for spreading information through a global 
network of associative connections; on the amount of redundancy exhibited 
by the paradigm which the item belongs to; and it is a relatively instantane-
ous process. It is an interesting result of the present investigation that such 
a broad range of evidence, including the role of morphological structure in 
lexical organisation and the principled difference between regular and ir-
regular morphological families in speakers’ perception, can effectively be 
accounted for by a distributed, memory-based computational architecture. 

In the end, the experimental evidence offered in these pages provides 
computational and empirical support to the hypothesis that emergence of 
morphological structure is set on by relevant formal redundancy in the lexi-
con, through processing-based perception of (sub)regular formatives shared 
by concurrently and competitively stored words. In this perspective, mor-
phological structure emerges in a gradient fashion from associative rela-
tions among fully-inflected words, and lexical perception and organisation 
are grounded on memory-based processing strategies, where many input 
factors – such as word frequency, paradigm (ir)regularity, as well as sali-
ence, wordlikeness and word length – dynamically affect lexical acquisition 
and the development of morphological knowledge. 
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