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7.1 Introduction

According to the Dual Mechanism approach to word processing (Prasada and

Pinker 1993; Pinker and Prince 1988; Pinker and Ullman 2002; among others),

recognition of a morphologically complex input word involves two interlock-

ing steps: (i) preliminary full-form access to the lexicon, and (ii) optional

morpheme-based access to sub-word constituents of the input word, resulting

from the application of combinatorial rules taking care of on-line word

segmentation. Algorithmically, step (ii) is taken if and only if step (i) fails

to find any matching access entry in the lexicon. The view accounts for the

appropriate mastering of irregular and subregular forms, which are assumed

to be stored and accessed in the lexicon as full forms, while relying on

morpheme-based access for the stem and affix of those morphologically
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regular forms which are not found in the lexicon as full forms. The approach

endorses a direct functional correspondence between principles of grammar

organization supporting the lexicon vs. rules dichotomy, processing correlates

(storage vs. computation), and localization of the cortical areas functionally

involved in word processing (temporo-parietal vs. frontal areas in the human

cortex; see Ullman 2004).

Although such a direct correspondence is probably the most straightfor-

ward model of the grammar-processing relation (Miller and Chomsky 1963;

Clahsen 2006), it may only be the artefact of an outdated view of lexical

storage as more ‘costly’ than computational operations (Baayen 2007). Alter-

native theoretical models put forward a more nuanced indirect correspondence

hypothesis, based on the emergence of morphological regularities from inde-

pendent principles of hierarchical organization of lexical information (Cor-

bett and Fraser 1993; Wunderlich 1996; Dressler et al. 2006). In the Word-and-

Paradigm tradition (Matthews 1991; Pirrelli 2000; Stump 2001; Blevins 2006),

fully inflected forms are mutually related through possibly recursive paradig-

matic structures, defining entailment relations between forms (Burzio 2004).

A less symbolic version of the same hypothesis (Bybee 1995a) sees the mor-

phological lexicon as a dynamic, parallel network of fully memorized word

forms. In the network, forms sharing meaning components and/or phono-

logical structure are associatively connected with one another, as a function

of formal transparency, item frequency, and size of morphological family.

This view prompts a different computational metaphor than traditional

rule-based models: a speaker’s lexical knowledge corresponds more to one

large relational database than to a general-purpose automaton augmented

with lexical storage (Blevins 2006), thus supporting a one-route model of word

competence.

In this chapter, we explore the implications of the two models in

connection with issues of inflectional paradigm learning, based on two

sources of empirical evidence: (a) experimental and developmental data of

human processing and storage of complex forms, with particular emphasis

on dissociation effects of regular vs. irregular inflections (section 7.2) and

(b) evidence of computer models of inflection learning, tested on samples of

realistically distributed training data (section 7.3). We then present an original

computer model of memory self-organization (section 7.4) and apply it to the

task of learning verb paradigms in Italian and French (section 7.5). The model

learns a stochastic finite state automaton based on patterns of Hebbian

connectivity in a self-organizing topological memory. We eventually discuss

the implications of this processing architecture and some experimental results

against the background of the dual-route vs. one-route mêlée.
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7.2 Word processing evidence

Morphological ontology

In Dual Mechanism Models, roots and affixes are the basic building blocks of

morphological competence, on the assumption that the lexicon is largely

redundancy-free. The speaker, having identified the parts of a word form,

proceeds to discard the original word from the lexicon. Contrary to such

views, most one-route models take full words as basic, with sub-word con-

stituents being considered epiphenomenal.

Over the past three decades, a large body of empirical evidence has sug-

gested that sub-word constituents do play a crucial role in the processing and

representation of morphologically complex words (see McQueen and Cutler

1998 and Clahsen 1999 for overviews). In lexical decision tasks (Taft 1979;

Whaley 1978; and Balota 1994 for a review), target lexical bases are effectively

primed by earlier presentation of regularly inflected related forms (walked!
walk), but they are not primed by irregular inflections (e.g. brought vs. bring).

The effect is interpreted as showing that walked activates two distinct lexical

representations, one for the stem walk and the other for the affix -ed.

Associative models of morphological processing account for dissociation

effects of this kind in terms of type/token frequency factors, phonological and

semantic similarity, or both (e.g. Eddington 2002; Ellis and Schmidt 1998;

Joanisse and Seidenberg 1999). For example, Rueckl and Raveh (1999) argue

that regular past tense forms are orthographically and phonologically more

similar to their base forms than irregular past tense forms are (compare

walked vs. walk with taught vs. teach); these different form properties account

for full priming of regular past tense forms.

Rule gradient

The elicited production method allows the testing of generalization properties

associated with morphological patterns. Subjects are presented with nonce-

words (e.g. *pring) for which they are asked to provide specific related inflected

forms (e.g. the corresponding past participle form, say *prung). By modulating

nonce-words by similarity to attested patterns (string–strung) and by the

frequency of these patterns (frequent vs. rare), properties of morphological

processes are investigated. Productive morphological rules are reported to

generalize to nonce-words irrespective of the frequency and level of similarity

of attested patterns. In contrast, minor morphological processes are sensitive to

such effects. Once more, this is interpreted as a memory effect.

Supporters of one-route models, on the other hand, conceive of this

opposition as a gradient. More default rules may concurrently take care of
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the same morphological process, possibly applied to different base forms (see

Burzio’s 1998 notion of multiple correspondence). Both regular and subregular

inflections typically cluster into phonologically or even semantically coherent

families. Speakers demonstrably use these patterns to produce novel forms by

analogy to already stored ones, and the same is true for regular inflections (see

Albright’s 2002 reliability islands).

Derivationality

Dual MechanismModels assume that base forms and fully inflected forms are

derivationally related: the morphological processor accesses lexical bases to

derive surface forms on-line. Alternatively, one-route models typically assume

storage of full forms, both regular and irregular. On closer scrutiny, however,

the derivational assumption appears to be orthogonal to the Dual Mechanism

vs. one-route debate. According to some scholars (Aronoff 1994; Anderson

1982; 1992; Zwicky 1985; Carstairs[-McCarthy] 1987; Stump 1993a; 2001), the

paradigm contains a set of slots defined in terms of morpho-syntactic feature

values and shows how each slot is to be filled in through application of formal

functions to lexical bases. In this respect, paradigmatic relations are equiva-

lent to augmented derivational processes, applying under some global con-

straints such as blocking, completeness, and uniqueness (Aronoff 1976;

Carstairs[McCarthy] 1987; Wunderlich 1996; Kiparsky 1998).

Frequency effects

Some important empirical findings suggest that surface word relations con-

stitute a fundamental domain of morphological competence. Of late, partic-

ular emphasis has been laid on the interplay between form frequency, family

frequency, and family size effects within morphologically based word families.

The two best-known such families are the inflectional paradigm and the

derivational family. Family frequency has been shown to correlate positively

with response latencies in lexical decision (Baayen, Dijkstra, and Schreuder

1997; Taft 1979; Hay 2001). Family size is known to negatively correlate with

visual lexicon decision latencies, as documented for a variety of languages

(Baayen et al. 1997; Ford, Marslen-Wilson, and Davis, 2003; Lüdeling

and Jong, 2002; Moscoso del Prado Martı́n, Bertram, Häikiö, Schreuder,

and Baayen 2004). Evidence from research on speech errors (Stemberger

and Middleton, 2003) suggests that English present and past tense forms are

in competition, and that this competition is modulated by the a-priori

probabilities of the vowels in these forms, even if they are regular (Tabak,

Schreuder, and Baayen 2005). Finally, Maratsos (2000) reports that many

individual verbs are used by children in both correct and overgeneralized
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forms (e.g. brought and *bringed) for a long period. The evidence seems to

support a more dynamic, frequency-based competition between regular and

irregular forms than dual-route accounts are prepared to acknowledge.

Assuming that both regular and irregular forms are stored in the lexicon

seems to go further towards a competition-based account.

Automatic morphological processing

That more than just storage is involved, however, is suggested by interference

effects between false friends (or opaque pseudo-derivations) such as broth and

brother, which share a conspicuous word onset but are not related morpho-

logically (Longtin, Segui, and Mallé 2003; Rastle and Davis 2004). These and

other similar results, observed particularly but not exclusively for Semitic

languages (see Frost, Forster, and Deutsch 1997 and more recently Post et al.

2008), show that as soon as a given letter sequence is fully decomposable into

morphological formatives, word parsing takes place automatically, prior to

lexical look-up.

Paradigm learning

In the psycholinguistic literature, there is a general consensus that

Italian children are more precocious in mastering the present indicative

sub-paradigm than English children are in learning the simple contrast

between the third singular person and the base form (Brown 1973; Pizzuto

and Caselli 1992; Hyams 1992; Noccetti 2003). Within the framework of

Natural Morphology (Dressler et al. 1987), the development of verb inflection

has been investigated cross-linguistically by focusing on the structural proper-

ties of morphological paradigms (Bittner, Dressler, and Kilani-Schoch 2003;

Dressler 2000). Typological evidence of this kind provides a strong indication

that inflectional contrasts in prototypically inflecting verb systems are

acquired at a considerably earlier stage than inflectional contrasts in more

isolating verb systems, in contrast with rule-based accounts of morphology

learning which predict that more complex and richer (sub)paradigms should

take longer to be learned.

7.3 Computational modelling

Somewhat ironically, classical multi-layered connectionist networks (see

McClelland and Patterson 2002 for a review), often heralded as champions

of the associative view of word structure, appear to have problems with the

extensive evidence of global family size and frequency effects reported in the

previous section. By modelling inflection as a phonological mapping function
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from a lexical base to its range of inflected forms, connectionist architectures

are closer to a sub-symbolic, neurally inspired variant of classical derivational

rules than to associative models of the mental lexicon.

Lazy learning methods such as the Nearest Neighbour Algorithm (Bosch,

Daelemans, and Weijters 1996) or the Analogy-based approach proposed by

Pirrelli and Yvon (1999) require full storage of pre-classified word forms, and

make on-line use of them with no prior or posterior organization of stored

items. However, there is no explicit sense in which the system learns how to

analogize new exemplars to already memorized ones, since the similarity

function does not change over time and the only incremental pay-off lies in

the growing quantity of information stored in the database of examples.

These algorithms are good at finding analogies only if they are told where

to look for them.

All the approaches mentioned above are task-oriented and supervised, since

they assume that training word forms are glossed with morphological infor-

mation (e.g. morpho-syntactic features or morpheme boundaries). Hence,

they can replicate predefined morphological classes, but cannot discover new

classes. Arguably, a better-motivated and explanatory approach should be

based on the self-organization of input items into morphologically natural

classes with no external supervision.

There has been a recent upsurge of interest in the use of global paradigm-

based constraints to minimize the range of inflectional or derivational end-

ings heuristically inferred from unsupervised training data (Goldsmith 2001;

2006; Gaussier 1999; Baroni 2000). Goldsmith models paradigm learning as a

Minimum Description Length problem (Rissanen 1989): ‘find the battery of

inflectional markers forming the shortest grammar that best fits training

evidence’, where (i) a grammar is a set of paradigms defined as lists of

inflectional markers applying to specific verb classes and (ii) the training

evidence is a text corpus. The task is a top-down global optimization problem

and boils down to a grammar evaluation procedure. In Goldsmith’s algo-

rithm, however, the segmentation of morphemes is kept separate from their

evaluation. The two processes do not come into contact and we are left with

no principled answer to the problem of the interplay between word processing

and the morphological organization of the speaker’s mental lexicon. More-

over, it is hard to see how a child learning morphology can possibly be

engaged in a top-down search for global minima. Finally, the algorithm tells

us nothing about the way novel words are assigned to existing paradigms.

This aspect is addressed by Albright (2002), who applies the Minimal

Generalization Algorithm (Pinker and Prince 1988; Albright and Hayes

2002) to the acquisition of inflectional patterns in Italian conjugation. The

algorithm consists in aligning lexical entailments between inflected forms to
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extract from them very specific context-sensitive rules mapping one form into

the other. Albright shows that rules of this kind apply quite reliably, and that

their reliability score (based on the number of forms for which the mapping

rule makes the right prediction) correlates with human subjects’ acceptability

judgement on nonce-forms. However, Albright says very little about the type

of processing architecture that could support such a rule-based conception of

inflectional morphology. Moreover, it is not clear how learners can home in

on the right sort of frequency counts the framework requires.

Pirrelli and colleagues (2004; 2006; Pirelli 2007) suggest modelling the

mental lexicon as a topological Self-Organizing Map (SOM; Kohonen 2001).

Processing and storage in a SOM are governed by local principles of similarity

between input vectors (representing unsupervised training data) and the

weight vectors of the map’s processing nodes (see section 7.4 for more on

this). Nonetheless, due to its topological dynamics, the map is able to develop

clusters of specialized nodes which reflect global distributional patterns in the

training data. This makes SOMs suitable for simulating the emergence of

morphological clusters through lexical storage. However, it is difficult to see

how these clusters can be used for word recognition and production.

Both associative and Dual Mechanism Models find it hard to account for

the entire body of evidence reviewed here. All in all, the evidence lends

support to a less deterministic and modular view of the interaction between

stored word knowledge and on-line processing than dual-mechanism ap-

proaches are ready to acknowledge. If lexical blocking is assumed to transfer

to word recognition, it would predict that pseudo-affixed monomorphemic

words such as brother should not undergo decompositional processing, con-

trary to evidence on automatic processing. On the other hand, there is no way

to account for such effects in terms of either variegated analogy (of the sort

used by example-based approaches) or phonological complexity and percep-

tual subtlety of the input word (as suggested by McClelland and Patterson

2002). Both analogies and inflectional rhyming patterns have to exhibit a clear

morphological status; but such a status is taken to be epiphenomenal in

current connectionist thinking.

Computer models have been successful in tackling certain aspects of word

learning, but have not been able to provide, to date, a comprehensive picture

of the complex dynamics between computation and storage underlying

morphological processing. The currently emerging view sees word processing

as the outcome of simultaneously activating patterns of cortical connectivity

reflecting (possibly redundant) distributional regularities in the input at the

phonological, morpho-syntactic, and morpho-semantic levels. At the same

time, there is evidence to argue for a more complex and differentiated neuro-

biological substrate for human language than connectionist one-route models
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can posit (Post et al. 2008), suggesting that brain areas devoted to language

processing maximize the opportunity for using both general and specific

information simultaneously (Libben 2006), rather than maximize processing

efficiency and economy of storage. To our knowledge, no current computa-

tional model of word learning embodies such a complex interaction.

In what follows we describe an original computer model of dynamic

memory able to simulate effects of morphological self-organization that

mirror important distributional properties of inflectional paradigms. More-

over, we show that the resulting patterns of time-bound connectivity between

stored items function like a stochastic processing model of word inflection

that uses rule-like generalizations over learned data.

7.4 Computer modelling of memory self-organization

7.4.1 Kohonen Self-Organizing Map (KSOM)

Kohonen’s Self-Organizing Maps (or KSOMs; Kohonen 2001) are unsuper-

vised clustering algorithms that mimic the behaviour of so-called brain maps,

medium to small aggregations of neurons in the cortical area of the brain,

involved in selectively processing homogeneous classes of sensory data. Pro-

cessing in a brain map consists in the activation (or firing) of one or more

neurons each time a particular stimulus is presented. A crucial feature of

brain maps is their topological organization: nearby neurons in the map are

fired by similar stimuli. Although some brain maps are taken to be genetically

pre-programmed, there is evidence that at least some aspects of such global

neural organization emerge as a function of the sensory experience accumu-

lated through learning (Jenkins, Merzenich, and Ochs 1984; Kaas, Merzenich,

and Killackey 1983).

A KSOM is a grid of parallel processing nodes, also suggestively referred to

as ‘receptors’. Each node is synaptically connected with all units on the input

layer, where input vectors are encoded (Figure 7.1a). Each connection is treated

as a communication channel with no time delay, whose synaptic strength is

given by a weight value. Each receptor is thus associated with one synaptic

weight vector in the spatial connection layer.

Weight values on the connection layer are adjusted dynamically through

learning on the basis of two key principles: similarity and clustering. To see

them in action, it is useful to conceive of learning as articulated into three

phases: (i) parallel activation, when all receptors are fired by an input vector as

a function of the similarity between their weight vector and the input vector

itself; (ii) filtering, when the node whose synaptic weight vector is the most

similar to the current input vector is singled out as the Best Matching Unit
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(BMU); and (iii) adaptive learning, when weight vectors of all receptors are

adjusted to make them closer to values in the current input vector. The last

step, illustrated in Figure 7.1b, is modulated by two parameters: the learning

rate and the neighbourhood gain function. The learning rate defines the

propensity of the map to adjust its synaptic weights. The neighbourhood

function is defined as a bell-shaped curve (a Gaussian) centred on the current

BMU. The further away from the BMU a node is, the lower the value on the

bell and the weaker the adjustment of the node’s weight vector. Both learning

rate and neighbourhood gain gradually shrink during learning, to simulate

the behaviour of a map whose plasticity decreases over time.

Such a simple learning dynamics prompts an overall topological organiza-

tion of the map receptors in the map space. Input vectors that are similar in

the input space will strongly activate nodes that are close in the map space,

as shown pictorially in Figure 7.2, where input items are assigned to three

classes, each represented by a different grey pattern. On the untrained KSOM,

nodes that are fired by the same class of input vectors are randomly scattered

(Figure 7.2b). After training, they cluster in topologically connected areas of

the map (Figures 7.2c and 7.2d).

7.4.2 Temporal Hebbian Self-Organizing Map (THSOM)

Temporal Hebbian Self-Organizing Maps (THSOMs; Koutnik 2007) model

synchronization of two BMUs firing at consecutive time steps. This means
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Figure 7.1 KSOM: (a) spatial connection layer; (b) spatial neighbourhood function
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that a THSOM can remember, at time t, its state of activation at time t–1 and

can make an association between the two states. This is possible by augment-

ing traditional KSOMs with an additional layer of synaptic connections

between each single node and all other nodes on the map (Figure 7.3).

Connections are treated as communication channels whose synaptic

strength is measured with a weight value, updated in a fixed one-step time

delay. Weights on the connection layer (hereafter referred to as the temporal

connection layer) are adjusted by Hebbian learning, based on activity synchro-

nization of the BMU at time t–1 and the BMU at time t. During training, the

temporal connection between the two BMUs is potentiated (Figure 7.4a),
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Figure 7.3 THSOM: temporal connection layer
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Figure 7.2 KSOM: (a) dataset; (b) untrained network; (c) trained network; (d) node
labelling
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while the temporal connections between all other nodes and the BMU at time

t are depressed (Figure 7.4b). Logically, this amounts to enforcing the entail-

ment Bt! Bt–1.

7.4.3 Topological Temporal Hebbian Self-Organizing Map (T2HSOM)

The model adopted in the present work originally extends Koutnik’s THSOM

by using the neighbourhood function as a principle of organization of con-

nections in the temporal connection layer (Figures 7.5a, b). An additional

depressant Hebbian rule penalizes the temporal connections between the

BMU at time t–1 and all nodes lying outside the neighbourhood of the

BMU at time t (Figure 7.5c). This is equivalent to the logical entailment Bt–1
! Bt. Taken together, the temporal connections in Figure 7.5 enforce a

bidirectional entailment between Bt–1 and Bt inducing a bias for biunique

first-order Hebbian connections. We shall refer to such a bias as the associa-

tion biuniqueness assumption.

7.4.4 T2HSOMs in action

When trained on time series of input vectors, a T2HSOM develops (i) a

topological organization of receptors by their sensitivity to similar input

vectors and (ii) a first-order time-bound correlation between BMUs activated

at two consecutive time steps.
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Input vectors can be similar for two independent and potentially

conflicting reasons: (i) they have vector representations that are close in

the input space; and (ii) they distribute similarly, i.e. they tend to be

found in similar sequences. A T2HSOM tries to optimize topological cluster-

ing according to both criteria for similarity. For any sequence of input

vectors, the model creates an internal representation of the chain of BMUs

fired by the sequence. It is possible to map out the corresponding chain by

traversing the path of Hebbian connections leading from the BMU fired by

the first input vector to the one fired by the last input vector, going through

all intermediate BMUs. In this respect, the map behaves like a first-order

stochastic Markov model, whose states are topological clusters of class-

sensitive receptors and stochastic state transitions are represented by normal-

ized connections.

The knowledge of a trained T2HSOM is stored in the synaptic weights of its

nodes. Understanding and evaluating the map’s learning behaviour thus

requires a few post-processing steps to read off information from synaptic

weights. The first step consists in calibrating the trained map by assigning

a label to each node. A label is the symbol to which the node is most

sensitive, that is whose input vector is closest to the node’s weight vector.

Since similar input vectors activate nodes topologically close on the map,

labelling reveals the topological coherence of the resulting organization

(Figure 7.2d). The second post-processing step involves the temporal connec-

tion layer. Connection weights m-ji measure the synaptic strength between two

B

t–1 LTP gain

1

(a)

...

...

..

...

...

N

t

1

...

...

...

B

...

...

N

B

2vT(tE)

t–1 LTD gain

1

(c)

...

...

..

...

...

N

t

1

...

...

...

B

...

...

N

B

t–1 LTD gain

1

(b)

...

...

..

...

...

N

t

1

...

...

...

N

...

B

...

Figure 7.5 T2HSOM’s temporal layer plasticity: (a) Long-Term Potentiation; (b,c)
Long-Term Depression

146 vito pirrelli, marcello ferro, and basilio calderone

consecutively activated BMUs. They are transformed into transition prob-

abilities by normalizing the weight matrix (by columns) and then transposing

it:

ti;j ¼ mj;i "
1

�

N

h¼1
mh;i

ð1Þ

where ti,j represents the probability of making a transition from the symbol

labelling the i-th node to the symbol labelling the j-th node. The resulting

transition matrix is then used to analyse the performance of the model at

recall, making it possible to evaluate the following aspects:

% the number of out-going transitions from each node in terms of Shan-

non and Weaver’s entropy;

% the ability of the map to predict a word, expressed in terms of average

(un)certainty in guessing the next transition;

% an entropic measure of paradigm complexity based on the information

above.

7.4.5 Learning bias

Due to its temporal bias for biunique first-order Hebbian connections (sec-

tion 7.4.3), the map tries to internally represent each input sequence through a

dedicated chain of BMUs as shown in Table 7.1 for the input sequences ABC

and 123 (left panel).

When different sequences share the same head but have different tails, the

map creates a unique chain for the shared head and bifurcates upon the split

tail, as shown in the right panel of Table 7.1. If heads differ too, the map tries

to develop distinct chains by duplicating receptors that are dedicated to

identical symbols (see Table 7.2, left panel). In this way, the map supplies,

with space, lack of a memory order greater than one. However, if topological

constraints are enforced, shared subsequences are represented through shared

chains (Table 7.2, right panel).

Table 7.1. Chains of BMUs activated by different input strings

input chain input chain

ABC

123 g )
A! B ! C

1! 2! 3

aCD1

aCD2 g ) a! C ! D
!
!

1

2
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Note that the level of entropy of the map (i.e. its degree of uncertainty)

differs in the two panels of Table 7.2. In the left panel, the map can predict the

two symbol chains with certainty starting from the first symbol. Thus,

entropy goes down to zero. In the right panel of Table 7.2, entropy increases

when the chain bifurcates, as, upon activation of ‘D’, the map is in no position

to anticipate with certainty which out-going connection will be taken. Hence,

generalization and memory compression increase entropy. This observation is

confirmed by an analysis of the dynamic behaviour of a T2HSOM as detailed

in the following section.

7.4.6 Time–space trade-off

As the overall topological organization of the map is the result of cooperation

and competition between temporal and spatial vector similarity, its generali-

zation capabilities crucially depend on this dynamics.

When neighbourhood functions are operating, receptors that are fired by

similar input vectors tend to stick together in the map space. Large areas of

receptors are recruited for frequently occurring input vectors. In particular, if

the same input vector occurs in different contexts, the map tends to recruit

specialized receptors that are sensitive to the specific contexts where the input

vector is found. The more varied the distributional behaviour of an

input vector, the larger the area of dedicated receptors (space allowing).

These dynamics are coherent with a learning strategy that minimizes entropy

over inter-node connections. Moreover, it constrains the degrees of freedom

to specialize receptors, since all receptors compete for space on the map. As a

result, some low-frequency input vectors may lack dedicated receptors after

training. By the same token, dedicated receptors may generalize over many

instances of the same input vector, gaining in generality but modelling their

distributional behaviour more poorly. The main consequence of poor mod-

elling of the time-bound distribution of input vectors is an increase in the

level of entropy of the map, as more general nodes present more out-going

connections. However, topological generalization is essential for a map to

learn symbolic sequences whose complexity exceeds the map’s memory re-

sources (i.e. the number of available nodes). Moreover, lack of topological

Table 7.2. Alternative chains of BMUs activated by the same input strings

input chain input chain

aCD1

bCD2 g )
a

b

!
!

C

C

!
!

D

D

!
!

1

2

aCD1

bCD2 g )
a

b

!
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C ! D
!
!

1

2
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organization makes it difficult for a large map to converge on learning simple

tasks, as the map has no pressure to treat identical input tokens as belonging

to the same type (Ferro and Pirrelli, in preparation).

7.5 Modelling word learning

A T2HSOM learns word forms as time series of (phonological) symbols

preceded by a start-of-word symbol (‘#’) and immediately followed by

an end-of-word symbol (‘$’), as in ‘#,F,A,CH,CH,O,$’ (transcribed pronun-

ciation of Italian faccio, ‘I do’). Phonological segments are encoded through

n-dimensional binary vectors specifying place and manner of articulation. In

learning a word form, the map is exposed to one segment at a time, in order of

appearance from left to right. Upon exposure to the end-of-word symbol ‘$’,

the map resets its Hebbian connections thus losing memory of the order

in which words are presented. By being trained on several sequences of

this kind, a T2HSOM (i) develops internal representations of phonological

symbols, (ii) links them through first-order Hebbian connections, and

(iii) organizes developed representations topologically. The three steps are

not taken one after the other but dynamically interact in non-trivial ways, as

we shall see in the general discussion.

From a linguistic viewpoint, step (i) corresponds to learning individual

phonological segments by recruiting increasingly specialized receptors. Fre-

quent phonological segments are learned more quickly than less frequent

ones. Step (ii) allows the map to develop selective paths through consecutively

activated BMUs. This corresponds to learning word forms or recurrent parts

of them. Once more, this is a function of the frequency with which symbol

sequences are presented to the map. Finally, step (iii) combines spatial and

temporal information to cluster nodes topologically. Accordingly, nodes that

compete for the same symbol stick together on the map. Moreover, they tend

to form sub-clusters to reflect distributionally different instances of the same

symbol. For example, the phonological symbol ‘A’ in ‘#,F,A,CH,CH,O,$’

will fire, if space allows, a different node than the same symbol in ‘#,S,E,M,

B,R,A,$’ (sembra, ‘it seems’). In what follows we consider in some detail the

implications of this strategy for learning the inflectional paradigms of a

language.

In two learning sessions, we trained a 10x10 T2HSOM on present indicative

forms of Italian and French verbs. For each language, the set of forms was

selected according to their frequency distributions by person–number feature

combinations in a reference corpus. For both experiments, the same configu-

ration of learning parameters was chosen.
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7.5.1 Italian

The Italian training dataset contains present indicative forms of 20 different

verbs, for a total of 103 attested different forms, whose frequency distributions

are sampled from the Calambrone section of the Italian CHILDES sub-corpus

(MacWhinney 2000), of about 110,000 token words. As we were mainly

interested in effects of global paradigm-based organization, forms were

mostly selected from regular, formally transparent paradigms. Nonetheless,

some subregular high-frequency forms (such as those of STARE ‘stay’, FARE

‘make’ and POTERE ‘be able’) were present in the training set.

The resulting overall map is shown in Figure 7.6. Shades of grey on arrow

lines indicate levels of connection strength, with darker lines representing

stronger connections. Vowel segments are clustered topologically and clearly

separated from consonants. Moreover, they appear to play the role of promi-

nent attractors for patterns of connectivity, particularly when they function as

(parts of) inflectional endings. In some cases, it is possible to follow a

continuous path of connections going from ‘#’ (top left corner of the map),

to ‘$’ (bottom left corner of the map), as with the high-frequency word form

‘#,F,A,$’ (‘it does’). In the vast majority of cases, however, connection chains
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Figure 7.6 A T2HSOM trained on Italian present indicative verb forms
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represent recurrent segmental subsequences, corresponding to inflectional

endings, verb stems, or parts of them.

The underlying paradigmatic structure of such an entangled bundle of

connections is thrown into sharper relief in Figure 7.7, where each panel

shows the activation pattern of the map when it is fired by forms that occupy

the same present indicative cell (1st person singular, 2nd person singular, etc.).

Clearly, the six panels share a substantial number of connectivity patterns,

due to repeated activation of regular stems, and differ in the way stems are

connected with inflectional endings.

Figures 7.6 and 7.7 provide a static view of paradigms as entrenched

patterns of inter-node connectivity. To get a flavour of the process of dynamic
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Figure 7.7 The underlying structure of Italian present indicative cells
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emergence of any such pattern through learning we have to turn to Figure 7.8.

Here, temporal weights over connections between the verb stem and its

present indicative endings are monitored through 100 learning epochs for

the regular verb ARRIVARE (‘arrive’). In the plot, each connection weight is

normalized according to equation (1) above. After an initial chaotic phase,

with inflectional endings competing for primacy, the paradigm converges to a

stable state at around epoch 45. The two greyish vertical lines on the plot mark

the points in time when the topological organization of the spatial layer

subsides (solid line), and when the topological organization of the temporal

layer comes to an end (dashed line). We shall comment on the role of these

two signposts later in the general discussion.

7.5.2 French

The French training set includes 100 present indicative forms sampled from

the MorPa corpus (Montermini, Boyé, and Tseng 2008) according to their

frequency distributions and phonologically transcribed with an inventory of

40 phonemes with binary vector encoding.

The four panels of Figure 7.9 show patterns of connections for 1st singular

forms (a), 1st plural forms (b), 2nd plural forms (c) and 3
rd plural forms (d) of

the French present indicative. In panels (b) and (c), 1st and 2
nd plural endings

show dedicated patterns of connectivity reflecting their recurrent activation.

Each such pattern includes the incoming connection to the node specialized

for the inflectional ending (represented by the symbol ‘5’ for the first person

plural and ‘e’ for the second person plural) and its outgoing connection to the

end-of-word symbol ‘$’.

Figure 7.10 shows how temporal weights over stem-ending connections

evolve through learning epochs in the regular present indicative paradigm of
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Figure 7.8 Stem-ending connections in the present indicative of ARRIVARE
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AIMER. Due to the extensive syncretism of French present indicative forms in

the three singular persons (and, in regular cases, also in the third plural

person), the cumulative effect of their pressure on first and second plural

endings means that the latter hardly reach perceivable levels of activation.
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Figure 7.9 The underlying structure of French present indicative cells
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7.6 General discussion

T2HSOMs memorize word forms by topologically organizing (a) nodes that

are sensitive to word segments and (b) patterns of time-bound connectivity

between consecutively fired nodes. Due to the biuniqueness association

assumption (section 7.4.3), the strength of any inter-node connection

‘A$B’ is (a) a direct function of the number of times the connection is

activated during training, (b) an inverse function of the number of times ‘A’

is seen preceding a symbol which is not ‘B’, and (c) an inverse function of the

number of times ‘B’ is seen following a symbol which is not ‘A’. This simple

dynamics has important consequences for the way paradigms are learned and

eventually organized by a T2HSOM.

First, all regularly inflected forms belonging to the same paradigm compete

with one another on the map. For instance, ‘#,A,R,R,I,V,O,$’ (‘I arrive’)

inhibits and is inhibited by ‘#,A,R,R,I,V,A,$’ (‘(s)he arrives’). Second, each

form may be supported by other word forms sharing the same stem-ending

transition. For example, ‘#,A,R,R,I,V,O,$’ is strengthened by ‘#,D,E,V,O,$’.

Finally, ‘#,A,R,R,I,V,O,$’ is inhibited by word forms with a different stem-

ending transition, such as ‘#,S,T,O,$’ (‘I stay’) and ‘#,L,E,G,G,O,$’ (‘I read’).

To illustrate this point in more detail, let us turn back to Figure 7.8 above.

In the paradigm of ARRIVARE, different endings compete chaotically in the

first learning epochs, before the map reaches a stage where the topological

organization of the spatial layer subsides (solid vertical line). In this initial

phase, dedicated receptors have not yet developed (especially for low-fre-

quency symbols) and BMUs change dramatically, affecting large neighbour-

ing areas on the map. An intermediate phase starts with the solid line and

ends with the dashed vertical line, marking the epoch where the topological

organization of the temporal layer comes to an end. In this phase, macro-

paradigms start to set in. Dedicated receptors are already topologically

organized and entrenched but temporal connections are still changed over

neighbouring areas. This means that different connections going into the

same receptor, say ‘V$O’ and ‘T$O’, strongly compete with one another for

the whole cluster of ‘O’ receptors. This causes connection weights to vary

considerably. The higher the productivity of an inflectional ending the more

chaotic this phase. Finally, when the dashed vertical line is reached, temporal

weights change moderately, with excitatory connections acting locally and

inhibitory connections making receptors specialize for context-sensitive sym-

bols. All in all, this phase can be interpreted as a process of paradigm

refinement, where the map assigns relative association strengths to endings

that form part of the same paradigm.

154 vito pirrelli, marcello ferro, and basilio calderone

This dynamics sheds light on frequency effects of paradigm entrenchment.

Figure 7.11 shows average levels of normalized association weights over stem-

ending connections in the present indicative paradigms of Italian (panel a)

and French (panel b), plotted against an incrementally growing lexicon. In

Italian, association weights of high-frequency endings start high in the upper

part of the panel, but slump rather quickly as the lexicon grows. Such a trend

is counterbalanced by the characteristically U-shaped curve of weights for

low-frequency endings in the same panel. After the map is exposed to 100

word forms, degrees of association strength level out considerably, allowing

the map to settle down far away from its associational biuniqueness bias. The

probability mass that the map assigns, on average, to an Italian present

indicative paradigm tends to be more evenly distributed after training, thus

avoiding within-paradigm levelling effects. This is due to balanced competi-

tion among intra-paradigmatic endings and lack of syncretism. In mathemat-

ical terms, Italian present indicative paradigms are highly entropic, and this

causes fast convergence of transition probabilities in the map.

The result highlights two further points. As more words are learned,

association strengths get smaller, since the map is storing more information

on time-bound connections between segments. Since the mapmust take stock

of more and more outgoing transitions from each node, paradigm entropy

increases. Nonetheless, the map is memorizing word forms better, as wit-

nessed by decreasing levels of the map’s uncertainty in going through a known
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word (Figure 7.12). Hence paradigm entropy increases, while word entropy

decreases. The map is moving towards a more balanced organization of verb

forms into paradigms, while, at the same time, memorizing individual verb

forms increasingly more accurately.

The Italian overall trend is less prominent when we look at the French data

(Figure 7.11b). Association weights neither go down nor converge as quickly as

in the Italian experiment. There is a slowly decreasing trend in the overall

association strength, but differences over individual endings remain high.

After being exposed to 100 different word forms, the map finds it difficult to

distribute transition probabilities evenly within a paradigm. The extensive

syncretism of French present indicative forms produces a frequency gang

effect that slows down the process of learning less frequent inflectional

markers (Figure 7.10).

7.7 Concluding remarks

As descriptive tools of theoretical linguistics, paradigms have enjoyed a hybrid

status, halfway between entrenched patterns of lexical organization and

processing structures enforcing global constraints on the output of traditional

inflection rules. In a psycholinguistic perspective, they appear to play a

significant role not only in the way morphological information is processed,

but also in the way the same information is acquired and structured through

competition of concurrently memorized word forms. To our knowledge, no

existing computational or psycholinguistic model of morphological proces-

sing can capture such a manifold range of diverse and potentially conflicting

requirements.

In the present contribution, we show that paradigmatic structures can

emerge through word learning as the by-product of the endogenous dynamics

of lexical memorization as competitive self-organization, based on the diverg-

ing principles of formal contrast (in space) and association biuniqueness (in

time). According to this view, inflected forms are not the output of rules
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Figure 7.12 Average per-word entropy in processing Italian and French verb forms
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mapping lexical representations onto surface realizations, but rather the

driving force of lexical organization. However, more than storage is involved

here. A trained map behaves like a first order stochastic Markov chain, with

inter-node connections building expectations about possible inflected forms

on the basis of a global topological organization of already known forms.

The model, we contend, prompts a radical reappraisal of the traditional

mêlée between one-route and dual-route models of morphology processing

and learning. That patterns of morphological structure are derivative of

associative connections between stored forms (modulated by frequency) by

no means implies that the same patterns play no role in word processing.

Being derivative does not necessarily mean being epiphenomenal. Conversely,

that rule-like generalizations apply in an apparently context-free way does not

imply that they play no role in the way word information is structured and

organized in the lexicon. Being important to processing does not mean being

irrelevant for word learning and storage, and vice versa. We believe that

further investigation into the computational and neuro-biological substrates

of morphological paradigms is certain to change our views on foundational

issues of grammar architecture.
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