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           5.1   Introduction 

 As of today, biometrics systems are gaining signifi cant attention due to their ability 
to protect humans and resources from potential non-legitimate user attacks in high 
security environments (e.g. airports, access control rooms, etc.). It is well known 
that humans have used body and other characteristics such as face, gait, etc. for 
recognizing each other (Gloor  1980  ) . The last decades several biometric systems 
have been developed and established their applicability in controlled environments 
such as fi ngerprints, retina and iris, and facial characteristics (Abate et al.  2007 ; 
Bowyer et al.  2008 ; Jain et al.  2004  ) . These technologies have demonstrated reliable 
user authentication in very restricted environments and the applicability of biomet-
rics to a wider range of surveillance areas stimulated the research community to the 
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design and development of new and emerging biometrics such as gait (Boulgouris 
and Chi  2007  )  and characteristics based on user anthropometric profi le (e.g. full or 
partially body measurements) (Ferro et al.  2009  ) . Current work on these approaches 
demonstrated their authentication potential and their ability to allow the non-stop 
authentication of the humans in high security environments. However, since these 
biometric techniques (activity-related signals and body measurements) are mature, 
more experimental frameworks shall be designed and evaluated for human verifi ca-
tion in order to fully deploy them in large-scale security applications. In the follow-
ing sections, two unimodal biometric traits are presented based on the analysis of 
body measurements either using dynamic signals (gait) or analyzing body in fi xed 
seat environment (body measurements using a sensing seat sensor).  

    5.2   On the Potential of Body Measurements 
for User Authentication 

    5.2.1   Authentication Potential of Gait as a Biometric 

 The last 10 years, gait as a biometric has received signifi cant attention due to increase 
in the importance of surveillance and security in public and private areas. Latest 
research activities in multi-biometric environments have evolved the use of gait as a 
promising modality for identifi cation and authentication purposes. The current state 
of the art is that “databases of over 100 subjects imaged walking outdoors or indoors 
can be recognised with well over 90% identifi cation rate and factors which affect gait 
were understood, there was capability to handle application environment and under-
standing of the measure’s potency for recognition purposes” (Gloor  1980  ) . However, 
recognition rates with change of view angle, clothing, shoe, surface, illumination, and 
pose usually decreased performance, thus making the human gait recognition a chal-
lenging and emerging biometric trait (Boulgouris et al.  2005  ) . 

 Recent studies on the gait recognition potential are focused mainly in two direc-
tions: view-invariant gait analysis (Jean et al.  2009 ; Bodor et al.  2009 ; Bouchrika 
et al.  2009  )  and novel algorithms for the extraction and fusion of static and kinematic 
parameters of human locomotion (Chen et al.  2009 ; Bouchrika and Nixon  2008  ) . In 
most cases, gait recognition is comprised from two main phases: a feature extrac-
tion phase, where motion information is obtained and recognition phase, where a 
classifi cation technique is applied to the obtain motion patterns. The crux of the gait 
recognition lies in perfecting the fi rst phase. It is challenging to specify gait features 
that are suffi ciently discriminable and can be reliably extracted from video. The 
methods utilised for this feature extraction can be broadly classifi ed as being either 
model-free (appearance-based) or model-based. Appearance-based methods focus 
on the spatiotemporal information contained in the silhouette images. Model-based 
methods construct human model to obtain explicit features describing gait dynamics, 
such as stride dimensions and joint kinematics. 



1075 Gait and Anthropometric Profi le Biometrics: A Step Forward

 A recent study using model-based approach (fi ve-link biped model) reported 
recognition rates of 100% in the CMU MoBo data set (25 subjects) (Zhang et al.  2007  ) . 
When examining a greater data set, Bouchrika and Nixon  (  2007  )  reached a correct 
classifi cation rate of 92%, again, by means of model-based approach. In their study 
the motion templates describing the motion of the joints as derived by gait analysis, 
were parameterised using the elliptic Fourier descriptors. The mean error for the 
extracted joints compared to manual data (10 persons) was 1.36% of height. 
However, in both model-based approaches the camera was capturing the side-view 
of the subjects. Promising results for a frontal-view gait recognition have been dem-
onstrated by Goffredo et al.  (  2008  )  by means of an appearance-based approach. The 
proposed method for the front-view gait analysis is based on two consecutive steps: 
the gait cycle detection and the gait volume description. Without any knowledge of 
the camera parameters the authors found a mean percentage of recognition rate 
equal to 96.3%, when examining three public available databases. 

 Concluding, both model- and appearance-based approaches have increased their 
performance in gait recognition the last years. When examining gait recognition 
under several certain view angles (especial frontal or near frontal view) appearance-
based approaches seem to outperform the model based approaches. However when 
the issue is an approach, which should be independent from viewpoint, i.e. enrol-
ment and test are taking place at different view angles, model based methods seem 
to be more appropriate. It is possible that a fusion of model- and appearance-based 
approaches can contribute to higher rates, whereas the static and dynamic cues of 
gait are extracted using compact representations with robust performance in dynamic 
changing environments.  

    5.2.2   Authentication Potential of Body Measurements 
as a Biometric 

 Several companies are currently working to realize comfortable interactive seats. 
These systems, some of them already on the market, use different technologies and 
materials, but they share the use of sensors that measure the pressure exerted on the 
seat by the subject. Actually, the existing sensing seats are not able to perform the 
human authentication task and no result on this topic, even if in a preliminary stage, 
was found in literature review. The BPMS by  Tekscan  measures the pressure distri-
bution of a human body on support surfaces such as seats, mattresses, cushions, and 
backrests and it is used for automotive driver seat design, hospital and home seat 
design, comfort analysis. The study developed by Tan et al.  (  2001  )  is focused on 
sensing chair using pressure sensors placed over the seat pan and back rest of the 
chair for real-time capturing of contact information between the chair and its occu-
pant in order to implement static posture classifi cation. A kind of technology, devel-
oped in the textile domain, is Softswitch (The Softswitch Company  2008 : it is based 
on pressure sensors that can be integrated in fabrics. Softswitch combines conductive 



108 D. Ioannidis et al.

textile materials and a quantum tunnelling composite (QTC) with unique pressure 
controllable switching properties. The research of seating comfort in the transporta-
tion industry is still an open problem; for solving this question some studies 
(The Johnson Controls Company  2008  )  have been effected to evaluate the advantages 
and the disadvantages of automotive seat. It is possible to note that the presented 
systems are more focused on comfort monitoring, pressure mapping, air-bag acti-
vation and event-related tasks. However, the information supplied by these systems 
may be used to extract features useful for the authentication task, as for instance 
pressure profi le. UNIPI, starting from this consideration, works to realize a system 
for subject authentication based on sensing seat. The fi rst prototype of this system 
is part of the HUMABIO (Human Monitoring and Authentication Using Biodynamic 
Indicators and Behavioral Analysis) project for multi-modal human authentication. 
HUMABIO is a EC co-funded Specifi c Targeted Research Project (STREP) where 
new types of biometrics were combined with state of the art sensor technologies in 
order to enhance security in a wide spectrum of applications like transportation 
safety and continuous authentication in safety critical environments like laborato-
ries, airports or other buildings. In this project, the enrolment and the authentication 
procedures were carried out with the cooperation of the user, according to the 
instructions supplied by the system. The mentioned prototype is able to supply a 
one-dimensional deformation profi le, and, after a feature extraction process, the 
system is able to perform the human authentication task. The ACTIBIO project 
aims to perform a continuous authentication, without interfering with the user 
actions and according to the detection of predefi ned events. According to this purpose, 
the previous SensingSeat prototype was upgraded and a new control system was 
developed to handle the issues regarding the continuous authentication as well as 
the event notifi cations of the ACTIBIO core system.   

    5.3   Gait Biometric Technology 

    5.3.1   Proposed Approach and Motivation 

 The main purpose and contributions of this paper are summarized as follows:

   A novel gait recognition system is proposed based on the use of 2D and new 3D  –
appearance-based features of the image silhouette sequence.  
  Three novel feature extraction techniques are presented: the two of them are  –
based on the generalized Radon Transform, namely the Radial Integration 
Transform (RIT) and the Circular Integration Transform (CIT), whilst the third 
descriptor is based on the weighted Krawtchouk moments. The former are uti-
lized in order to provide an analytical representation of the static and dynamic 
cues of the human body shape using a few coeffi cients, and the latter, are well 
known for their discriminating capability and compactness.  
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  The paper also introduces the use of range data, captured by a stereo camera, for  –
gait signal analysis. Depth related data are assigned to the binary image silhouette 
sequences using an innovative transform: the 3D Geodesic Silhouette Distribution 
Transform. This transform is utilized to encode information about the position of 
the human body segments on the image plain and their 3D distribution on the 
hull that depicts the visible human body.    

 The proposed algorithms were tested and evaluated in two main different data-
bases, namely the “Gait Challenge” of USF and in the proprietary gait database of 
the HUMABIO EU IST project consisting of 75 persons. Extensive experiments 
have been carried out in these databases and the proposed methods were found to be 
robust in existence of noise and with increased recognition accuracy, when com-
pared to other similar state-of-the-art algorithms.  

    5.3.2   Silhouette Extraction and Pre-processing Steps 

    5.3.2.1   Background Estimation and Binary Silhouette Extraction 

 The fi rst step in a human gait recognition system that uses appearance-based tech-
niques is the extraction of the walking subject’s silhouette from the input color 
image sequence. In this paper, a sequential number of steps are introduced in order 
to provide the fi nal binary silhouettes, as illustrated in Fig.  5.1 .  

 Initially, the background is estimated using a temporal median fi lter on the image 
sequence, assuming that the background is static and the foreground is moving. In 
the next step, the silhouettes, denoted as     Sil

kB   , are extracted by comparing each 
frame of the sequence with the background. The areas where the difference of their 
intensity from the background image is larger than a predefi ned threshold are con-
sidered as silhouette areas. The silhouette images that are extracted by this method 
are noisy. Therefore morphological fi ltering, based on anti-extensive connected 
operators (Salembier and Marqués  1999  )  is applied in order to denoise the binary 
silhouettes. Finally, potential shadows are removed by analyzing the sequence in the 
HSV color space (Cucchiara et al.  2001  ) , as illustrated in Fig.  5.1d .  

    5.3.2.2   Silhouette Enhancement Using Range Data 

 A novel technique is introduced that exploits range data, if they are available. At this 
stage, each gait sequence is composed of     k   preprocessed binary silhouettes     � Sil

kB   . 
Initially, the triangulated version of the 3D silhouette that also includes depth infor-
mation is generated. Then, using Delaunay triangulation on the available range data, 
the 3D hull (Moustakas et al.  2007 ), for each image of the gait sequence is estimated 
and fi nally using the Geodesic Transform (Ioannidis et al.  2007  )  the 3D Geodesic 
silhouette is extracted, denoted as     ˆ ( , )Sil

kG x y   . Figure  5.2  depicts extracted (a) binary 
silhouettes and (b) their corresponding 3D geodesic distributed silhouettes.  
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 In the fi nal step of the preprocessing stage, the denoised binary (    � SilB   ) or 3D 
silhouette sequence (    ˆ SilG   ) are scaled and aligned to the center of the frame in each 
frame (Sarkar et al.  2005  ) .   

    5.3.3   Feature Extraction Phase 

 In this paper, three appearance-based techniques are employed in order to extract 
the most discriminative characteristics of the human locomotion. In all cases, the 
input to this phase of the gait system is assumed to be either the binary silhouettes 
(    � Sil

kB   ) or the 3D-Geodesic image sequence (    ˆ Sil
kG   ). 

  Fig. 5.1    Denoising the initial silhouette images ( a ) using morphological fi lters ( b ), connected 
component labelling ( c ) and shadow suppression in terms of HSV colour space ( d )       

  Fig. 5.2    Illustration of silhouette representation used by the proposed system, ( a ) binary silhou-
ette, ( b ) 3D geodesic distributed silhouette       

 

 



1115 Gait and Anthropometric Profi le Biometrics: A Step Forward

    5.3.3.1   Generalized Radon Transformations 

 Two one-dimensional Radon transformations are introduced for feature extraction, 
namely the Radial Integration Transform (RIT) and the Circular Integration 
Transform (CIT), which are proven to provide a full analytical representation of the 
human silhouette (Daras et al.  2006  ) . In particular, the RIT of a function f(x,y) is 
defi ned as the integral of f(x,y) in the direction of a straight line starting from the 
point     0( , )ox y    and forming angle     q    with the horizontal axis x (Fig.  5.3 ). In the pro-
posed approach, the discrete form (Daras et al.    2006   ) of the RIT transform is used: 

     
0 0

1

1
( ) ( ·cos( ), ·sin( ))

=
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RIT t Sil x j u t y j u t
J

Dq D Dq D Dq
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where     = 1,...,t T   ,     uD    and     Dq    are the constant step sizes of the distance     ( )u    and 
angle     θ( )   ,     J    is the number of silhouette pixels that coincides with the line that 
has orientation     q    and are positioned between the center of the silhouette and the 
end of the silhouette in that direction,    Sil    represents the correspondent binary or 3D 
silhouette image, and fi nally     360 /= oT Dq   . 

 In a similar manner, CIT is defi ned as the integral of a function f(x,y) along a 
circle curve h( r ) with center     ( )0 0,x y    and radius  r  and its discrete form that is uti-
lized by the proposed gait system is given by:

     0 0
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Δ = + Δ Δ + Δ Δ∑
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CIT k Sil x k t y k tr r q r q    (5.2)  

where k = 1,…,K,     Δr   and     Δq    are the constant step sizes of the radius and angle 
variables,  K      Δr   is the radius of the smallest circle that encloses the binary or 3D 
silhouette image     Sil  , and fi nally     360 /= ΔoT q   .  

  Fig. 5.3    Applying the RIT ( a ) and CIT ( b ) transforms on a silhouette image       
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    5.3.3.2   Orthogonal Discrete Transform Using Krawtchouk Moments 

 In this work, a new set of orthogonal moments is proposed based on the discrete 
classical weighted Krawtchouk polynomials (Mademlis et al.  2006  ) . These moments 
are proposed due their capability to extract local shape characteristics of images and 
in addition their orthogonality ensures minimal information redundancy. The 
Krawtchouk moments Qnm of order (n + m) are estimated using the weighted 
Krawtchouk polynomials for a silhouette image (binary or 3D) with intensity func-
tion     ( , )Sil x y    as follows:

     

− −

= =

= − −∑∑
1 1

0 0

( ; 1, 1)* ( ; 2, 1)· ( , )
N M

nm n m
x y

Q K x p N K y p M Sil x y    (5.3)  

     ρ
= ( ; , )

( ; , ) ( ; , )
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w x p N
K x p N K x p N

n p N    (5.4)  

where     nK   ,     mK    are the weighted Krawtchouk polynomials, and (N−1) × (M−1) rep-
resents the pixel size of the silhouette image. Figure  5.4  shows a graphical represen-
tation of the reconstructed silhouette images using different orders of N (for width) 
and M (for height).    

  Fig. 5.4    Reconstruction of silhouette images using Krawtchouk moments for different moment 
order values (N, M), ( a ) Original Silhouette (W × H = 188 × 200), ( b ) N = W/10, M = H/4, ( c ) 
N = W/10, M = H/16, ( d ) N = W/30, M = H/2 and ( e ) N = W/15, M = H/3       
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    5.3.4   Signature Matching 

 The following notations are used in this section: the term gallery is used to refer to 
the set of reference sequences, whereas the test or unknown sequences to be verifi ed 
or identifi ed are termed probe sequence. An important step in the recognition sys-
tem, formally before the matching stage, is gait cycle detection of the gallery/probe 
sequence. In this paper, the gait cycle is detected using a similar approach to 
Boulgouris et al.  (  2004  ) , whereas the signature matching is based on the method 
described analytically in Ioannidis et al.  (  2007  ) . Specifi cally, for each classifi er of 
the proposed system, a distance score is estimated between the probe and the gallery 
    (Pr , )TD obe Gallery   . Finally, the fi nal distance is calculated based on the weighted 
algorithm (RCK-G) that is presented analytically in Ioannidis et al.  (  2007  ) .  

    5.3.5   Experimental Results and Conclusions 

 The proposed methods were evaluated on two different databases: (a) the publicly 
available HumanID “Gait Challenge” dataset (Sarkar et al.  2005  ) , and (b) the pro-
prietary large indoor HUMABIO dataset (Ioannidis et al.  2007  ) . For evaluation of 
the proposed approach in a verifi cation scenario, Rate Operating Characteristic 
curves (ROC) are used that illustrate the probability PV of positively recognizing an 
authorized person for different values of the false acceptance rate P 

FAR
 . 

 Verifi cation results on USF dataset for RCK-G algorithm are reported in Table  5.1  
in comparison with the baseline algorithm (Sarkar et al.  2005  ) .  

 As seen, the proposed method based on the silhouette sequences and using the 
weighted classifi ers generally outperforms the baseline method. Using the normal-
ized distances-scores, the verifi cation performance is improved, e.g. for a false 
rejection rate of 10% the verifi cation rate is above 64% for all experiments A-G. 

   Table 5.1    Comparative verifi cation rates Pv of the proposed optimal weighted features (RCK-G) 
and the baseline algorithm (Sarkar et al.  2005  )  at a false rejection rate of 1%, and 10% using 
z-Norm scores and the binary silhouette transform, due to the lack of range data in the USF 
database   

 ZN (z-Norm)  ZN 

 P 
v
  (%) at P 

FRR
  1%  P 

v
  (%) at P 

FRR
  10% 

 RCK-G  USF  RCK-G  USF 

 A   92   86   99   96 
 B   88   76   97   90 
 C   72   59  93   80  
 D   46   42  78   70  
 E  41  52   78   60 
 F 25  41   64   60 
 G  32  36   67   45 
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 Verifi cation results are also reported for the HUMABIO gait database. The ROC 
using the z-Norm scores of the weighted feature algorithm (RCK-G) is shown in 
Fig.  5.5 . Verifi cation rates are increased when 3D silhouette sequences were used 
instead of the binary silhouettes. For example, for a false rejection rate of 5% the 
verifi cation rate is increased by 6% for shoe (experiment C) condition, when 
Geodesic silhouette distribution transform is used.  

 In this section, a novel feature-based gait recognition framework was presented 
that uses the 2.5D information of the captured sequence captured by a stereo camera. 
This information is initially transformed into a 3D hull and then the 3D protrusion 
transform is proposed to generate the “geodesic” silhouette. Three novel feature 
extractor algorithms are combined together using a weighted algorithm in order to 
extract the static and dynamic cues of the human gait shape either in the binary silhou-
ette or in the geodesic silhouette distribution. Experimental results demonstrate the 
effi ciency of the proposed method when compared to state of the art approaches.   

    5.4   An Innovative Sensing Seat for Human Authentication 

    5.4.1   Sensing Seat Technology 

 The UNIPI module is an unobtrusive and versatile sensing seat system for human 
authentication that can be employed in different scenarios such as truck and car 
pilots, airplane pilots, plant and offi ce personnel, and, in general, environments 
where the security is mandatory and a soft seat is available. It is an anthropometric 
system based on pressure sensors integrated in seats, in order to enhance the security 
and reliability of the other biometric system but also increase its applicability to 
scenarios where the physiological profi le of an individual cannot be obtained. 
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  Fig. 5.5    Rate Operating Characteristic (ROC) curves for the HUMABIO gait database using the 
weighted classifi ers (RCK-G) and normalized scores (zNorm) based on the Binary Silhouette 
Transform ( left ) and the Geodesic Silhouette Distribution Transform ( right )       
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 The sensing seat is realized by a seat coated by a removable Lycra sensing cover. 
The sensing cover is able to respond to simultaneous deformations in different 
directions by means of a piezoresistive network which consists of a mixtures of 
polymers deepened with coal directly printed onto the fabric. The strain sensors 
developed by the University of Pisa are realized by means of Conductive Elastomers 
(CE) composites (Lorussi et al.  2004,   2005  ) . CE composites show piezoresistive 
properties when a deformation is applied and can be easily integrated into fabric 
or other fl exible substrate to be employed as strain sensors. The used CE is based 
on a WACKER Ltd (Elastosil LR 3162 A/B) product (The Wacker Company  2008  ) . 
It consists in a mixture of graphite and silicon rubber. WACKER Ltd guarantees the 
non-toxicity of the product that, after the vulcanization, can be employed in medi-
cal and pharmaceutical applications. It can be smeared on fl exible and elastic 
substrate or arranged in fi lms applicable on elastic supports. Sensors were realized 
by directly smearing the CE on a Lycra®-cotton fabric previously covered by an 
adhesive mask. The mask is designed according to the shape and the dimension 
desired for the sensors. The production phase is structured as follows: after depos-
iting the material, the mask is removed and the treated fabric is placed in an oven 
at about 130°C. During this phase the cross-linking of the solution speeds up and, 
in about 10 min, the sensing fabric is ready to be employed. It is important to 
underline that the integration of CE materials does not change the mechanical 
properties of the underlying texture, thus maintaining a good comfort for the user. 
For a correct determination of sensor positions and orientations, experimental tri-
als were performed in order to validate the proposed design. To obtain a specifi c 
sensor topology over the fabric, an adhesive mask representing the drawing of 
sensors and connections was realized. The mask is designed starting from the 
desired sensor positions and orientations traced on a three-dimensional model of 
the human body. Then, the mask is realized by cutting a sheet of adhesive paper 
with a laser milling machine. 

    5.4.1.1   Static and Dynamic Characterization of Conductive 
Elastomeric Sensor 

 The piezoresistive properties of CE composites, in literature, are statically described 
by using percolation theory. In our work, the attention has been focused on the 
behavior of the electrical resistance of CE during the transient time and other 
non-linear phenomena occurring after a deformation. In our application, CE has 
been integrated into fabric and employed as strain sensors. The main objective of 
the CE characterization has been to determine the relationship between the electric 
resistance R(t) of a CE sample and its actual length L(t), where t is the time. 

 For instance, in terms of quasi-static characterization (Lorussi et al.  2005  ) , a CE 
sample of 5 cm in length and 1.7 cm in width presents an non-stretched electrical 
resistance of about 3KOhm per cm, and its gauge factor (GF) is about 2.9. In order 
to obtain the gauge factor, it is necessary to construct the static calibration curve 
shown in Fig.  5.6 .  
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 The curve is realized by stretching the CE sample with the step in deformation 
having different strain (Fig.  5.7 ) and at the same time acquiring the fi nal resistance 
value (Scilingo et al.  2003  ) . The GF represents the angular coeffi cient of the static 
calibration curve.  

 Sensor response shows a peak in correspondence to every mechanical transition. 
Sensor responses during constant pressure time intervals may be approximated by 
decreasing exponential, assuming the local minimum as the steady-state value. The 
longer the pressure time interval, the more the above mentioned approximation is 
accurate. In order to remove the contribution of high order exponential, the fi rst 
order time constants were extracted by means of a window fi lter. This choice allowed 
quantization errors introduced by the acquisition device in response to rapid transi-
tions to be avoided and sensor steady state deformation, related to slower frequency 
components, to be maintained. Taking into account the fi rst-order components of 
the sensor response (resistance variation) to a rectangular stimulation (applied 
deformation), the equivalent circuit represented in Fig.  5.8  can be derived.  

 The power supply V is the electrical equivalent of the imposed deformation. The 
switch T1 (initially open) is closed and opened in correspondence to the beginning 
and the end of the imposed deformation respectively. The switch T2 (initially open) 
is closed when T1 is opened again. Following a simple analysis of this circuit, it is 
easy to recognize that the variation of the charging and discharging currents of the 
capacitance in consecutive phases of stimulation are equivalent to the variation of 
the resistance of the sensor during its deformation and the following release respec-
tively. The circuit parameters R1, R2, R3 and C can be derived by using the features, 
extracted from reference experimental signals, listed in Table  5.1 . The features values 
listed above were extracted from ten cycles of a reference experimental signal and 
were used to derive the circuit parameters. 

 According to these ten cycles of stimulation, the solution of this equivalent circuit 
provided the results reported in Fig.  5.9 .  
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  Fig. 5.6    The static calibration curve       
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 Figure  5.10 , which has been reported as an example of this analysis, shows the 
output of a sample stretched with trapezoidal ramps in deformation having different 
velocities     �( )L t    (where     ( )L t    is the length of the sample).  

 The main remarks on sensor behavior are summarized in the following:

   Both in the case of deformations which increase or decrease very quickly the • 
length of the specimen and in the case of deformations which reduce it, two local 
maxima greater than both the starting and the regime value are shown.  
  If the relationship between  • R(t)  and  L(t)  were linear, one of the extreme described 
in the previous point would be a minimum.  
  The height of the overshoot peaks increases with the strength velocity  •    �( )L t   .  
  The relaxing transient time, which lasts up to several minutes, is too long to • 
suitably code the human movements.     
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  Fig. 5.7    Response of a CE sensor excited by step in deformation to build the static calibration curve       
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  Fig. 5.9    Values of the parameters of the equivalent electric model extracted from ten cycles of a 
reference experimental signal       
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    5.4.1.2   Electrical Model and Acquisition Electronic Design 

 The sensors and their connections to the acquisition unit was realized by means of 
the same materials, in this way no metallic cables are needed on the seat. This is an 
advantage in terms of user comfort as we maintain the fabric original elasticity. 
Moreover, by using this approach, the electrical contacts on the CE material can be 
placed in areas where the fabric deformations and stresses are reduced. Figure  5.11a , 
b represent the generic confi guration of a sensing cover and the electronics acquisi-
tion front-end respectively. The sensors are connected in series thus forming a single 
sensor line (larger line of Fig.  5.11a ) while the connections (represented by the thin 
lines of Fig.  5.11b ) intersect the sensor line in the appropriate points.  

 Since connections and sensors are made by the same material, both of them 
change their electrical resistance when the user moves. For this reason, the front-
end of the acquisition unit had to be designed in order to compensate the connection 
resistance variations. To obtain this result, the sensor line is supplied with a constant 
current I and the voltage falling across two consecutive connections are acquired 
using high input impedance amplifi ers (i.e., instrumentation amplifi ers), as shown 
in Fig.  5.11b . Considering the example of sensor S 

i
 , if the amplifi er is connected 

between C 
k
  and C 

k+1
 , only a little amount of current fl ows through the connection 

lines compared to the current that fl ows through the sensor line (and in the sensor S 
i
 ). 

In this way, if the current I is well dimensioned, the voltage read by the amplifi er is 
almost equal to the voltage fall across the sensor (that is proportional to the sensor 
S 

i
  electrical resistance). Taking into account the above described strategy, the analog 

front-end of the electronic unit included a number of instrumentation amplifi ers 
equal to the sensors number. The data coming from the front-end, are low pass fi ltered, 
digitalized and acquired in a PC by means of a general purpose card or transmitted 
by a dedicated electronic interface. Moreover, the power consumption is near zero 
resulting in a completely safe system. The fabric equipped with distributed and 
redundant unobtrusive strain sensors guarantees to address plasticity, low dimen-
sion, lightness, and low cost. Since the strain sensors can be directly printed on the 

  Fig. 5.11    Sensing cover electrical model ( a ) and electronic acquisition front-end ( b )       

 



120 D. Ioannidis et al.

fabric, specifi c cover layouts may be designed to coat different seat shapes obtaining 
a good adherence to the seat. As a result, the sensing seat system does not interfere 
with the mechanical structure of the seat and it is designed as an extension of the 
seat itself (Fig.  5.12 ).    

    5.4.2   Sensing Seat Experimental Results 

    5.4.2.1   Recording Protocol and Data Analysis 

 Several topology layouts were taken into account (series, parallel and quadrupole 
network of sensors) and fi nally the best compromise between the technical com-
plexity and the classifi cation performance of the system was found using the series 
network. The sensing cover prototype is equipped with 32 strain sensors: 16 sensors 
in the bottom side and 16 in the upper side. The existing sensing cover prototype 
was tailored to a real offi ce seat. Different layouts could be developed to handle dif-
ferent types of seats (e.g. offi ce seats, car seats). It should also be remarked that the 
seat must be soft enough to guarantee the sensors to be adequately stretched as a 
human subject is seated. Moreover, as it will be explained below, since the signals 
supplied by the sensors depend on the positioning and the initial stretching of the 
cover, data are consistent only after the cover is mounted over the specifi c seat. In 
fact, the enrolment signatures are not valid if the cover is dismounted and mounted 
again even on the same seat. In a normal scenario, once the sensing cover has been 
mounted, it should not be removed. However, in order to overcome this inconve-
nience, UNIPI studied some solutions. The best way is a kind of automatic recali-
bration. When the sensing cover is removed and mounted again, unavoidably the 
initial deformation of the cover is different, and consequently the electrical signals 
too. The recalibration phase needs only two steps: the signals in no-seated and in 

  Fig. 5.12    The Sensing Seat system prototype: ( a ) The offi ce seat equipped with the sensing cover; 
( b ) details of the sensor connections on the bottom side of the sensing cover       

 



1215 Gait and Anthropometric Profi le Biometrics: A Step Forward

full-seated condition. With these information, using an interpolation function, it is 
possible to map the status of the sensors from the previous confi guration into the 
current one. In this way, only using a scale factor, it is possible to adapt the previous 
signature and no new enrolment phase is necessary. Some methods to extract the 
features were tested, and the one, among the others, having the best performance in 
term of classifi cation, was the method using as features the minimum, maximum 
and mean values, and this one was implemented. In this way during an action the 32 
signals from the sensorized cover are acquired and stored, and the start and stop 
action time are taken in account. The initial and fi nal 5% of the entire time period 
are not considered for the analysis in order to bypass the transitory signal phenom-
ena. The remaining part of signal is elaborated in order to extract the minimum 
value, the maximum value and the mean value. This process is done over all the 32 
signals. At this point, this matrix of values recorded during the enrolment phase 
forms the biometric signature of a particular subject performing a particular action, 
and all the signatures are stored into a database. This process is done over all the 
subjects and over all the actions. During the authentication phase, the features are 
extracted with the same strategy and then they are compared with the stored signature 
using a classifi er. Some classifi ers were tested in order to evaluate the recognition 
phase. On the base of the results, the classifi er based on the Euclidean vector distance 
was chosen. No specifi c protocol is required to extract the features, since the 
recording protocol is very adaptable. Only the subject is asked to start from full-
seated position and to return in the same position after to have performed the action. 
Since these elements are linked to the deformation of the sensors due to the subject 
pressure, each signature represents the deformation of the seat. As a result, the voltage 
vectors available for each measurement and for each predefi ned position are related 
to the pressure exerted by the subject on the seat (Ford Global Technologies 
Inc.  2001 ; Hilliard  2002 ; Federspiel  2004  ) . 

 The ACTIBIO recordings gave the opportunity to have real data to be used to 
evaluate the system authentication performances. Relevant data for the SensingSeat 
system were collected in a fi xed seat offi ce scenario, giving to the users the oppor-
tunity to act according to a specifi ed protocol. The actions have been chosen in 
order to simulate in the best way a real offi ce scenario. The main activities are 
answer to phone, typing, using the mouse, writing with a pencil, taking a glass. The 
list of the actions for the events triggering are shown below (Table  5.2 ).  

 As previously explained, the data have been analysed with some algorithms in 
the way to test and chose the that one with best performance. The classifi er VDC, 
based on Euclidean vector distance, was trained on 80% of the available examples 
for each action and subject, while the remaining 20% was used as the test set. The 
results in term of FAR and FRR for each action and for each subject are shown in 
the fi gures below. The data were analyzed in order to classify each subject, with 
respect to the all the others, performing each action    (Figs.  5.13  and  5.14 ).   

 The results show a mean FAR = 0.9% +/−3.1% and a mean FRR equal to 0.1% 
+/−0.4%. Even if the results are encouraging, more tests must be conducted since the 
number of repetitions per action and subject is currently too small to assess the 
system reliability. The EER is calculated for each specifi c activities; in the following 
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fi gures, for simplicity, the “Phone reached the ear” and “Phone conversation” 
actions are shown, considering for instance the subject 13. The EER is calculated 
for the considered subject performing the specifi c action with respect to all the other 
subjects. This parameter permits to see how the system is able to recognize a subject 
during a specifi c event, and to see how it is able to distinguish the considered subject 
respect to all the others (Fig.  5.15 ).  
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  Fig. 5.13    SensingSeat authentication error: FAR and FRR (24 subjects, 21 actions, 6 repetitions 
per subject per action)       

   Table 5.2    The actions used 
for the event-related 
authentication analysis   

 Action ID  Action description 

 0  Phone conversation 
 1  Phone conversation (light) 
 2  Phone reached the ear 
 3  Phone left from ear 
 4  Interacting with mouse 
 5  Interacting with mouse (light) 
 6  Write typing 
 7  Write typing (light) 
 8  Writing with pencil 
 9  Writing with pencil (light) 
 10  Talking to the microphone panel 
 11  Talking the microphone panel (light) 
 12  Pressing buttons in the offi ce panel 
 13  Pressing buttons in the offi ce panel (light) 
 14  Drinking from glass 
 15  Drinking from glass (light) 
 16  Filling glass with water 
 17  Yawning 
 18  Raising hands 
 19  User is seated 
 20  Watching video 
 21  No activity 
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 Considering the global performance of the system, the best useful parameter is 
the EER calculated for each action considering all the subject. In the following table 
the results are reported (Table  5.3 ).  

100
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  Fig. 5.14    SensingSeat authentication error: mean and standard deviation of FAR and FRR along 
subjects ( left ) and actions ( right ); 24 subjects, 21 actions, 6 repetitions per subject per action       
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 With respect to the previous summarizing table, it is possible to show the 
comparison between the actions with the best and the worst score, respectively 
“Interacting with the mouse” and “Raising hand” (Figs.  5.16  and  5.17 ).    

   Table 5.3    EER calculated for every actions considering all the subjects   

 Action ID  Action description  EER per action 

 0  Phone conversation  1.268 
 1  Phone conversation (light)  1.087 
 2  Phone reached the ear  2.536 
 3  Phone left from ear  5.435 
 4  Interacting with mouse  0.867 
 5  Interacting with mouse (light)  0.945 
 6  Write typing  1.087 
 7  Write typing (light)  1.087 
 8  Writing with pencil  2.355 
 9  Writing with pencil (light)  0.925 
 10  Talking to the microphone panel  4.167 
 11  Talking the microphone panel (light)  4.167 
 12  Pressing buttons in the offi ce panel  1.345 
 13  Pressing buttons in the offi ce panel (light)  1.449 
 14  Drinking from glass  4.167 
 15  Drinking from glass (light)  4.167 
 16  Filling glass with water  2.213 
 17  Yawning  3.456 
 18  Raising hands  8.333 
 19  User is seated  4.456 
 20  Watching video  6.703 
 21  No activity  3.442 
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  Fig. 5.16    EER calculated for “Interacting with the mouse” considering all the subjects. The value 
of EER is 0.867       
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    5.4.2.2   Conclusions 

 In this section the development of a novel sensing seat system based on an unobtrusive 
piezoresistive sensor array is described. The main result is a positive assessment of 
the use of the reported sensing seat in the authentication task, showing the robust-
ness of the system in terms of biometric rates. Another relevant result is the assess-
ment of the strain sensor technology and of the classifi cation modules based on 
personal and event-related classifi ers. The proposed system is still under develop-
ment even if the actual prototype was successfully tested within unimodal and mul-
timodal environments. The main advantage in respect of the previous Sensing Seat 
prototype is represented by the absence of the cooperation of the human subject 
during the monitoring stage. The open issues include the performance study in 
extreme environmental conditions (e.g. very low and very high environmental 
temperature scenarios). Moreover, the strain sensor stability over time as well as its 
chemical properties must be investigated thoroughly in order to study the sensor 
degeneration over time (i.e. sensor aging). Additionally, in order to make the system 
really unobtrusive, the objects inside the clothes and the pockets (e.g. keys, wallet) 
should be treated as a point of disturbance to increase the fi nal user convenience. All 
the above mentioned topics will be taken into account in future developments.    

    5.5   Concluding Remarks 

 Biometrics measure physical or behavioral characteristics of an individual in order 
to recognize or authenticate their identity. Usually fi ngerprints, hand or palm geom-
etry, retina, iris, or facial characteristics are used as physical biometric variables. 
Signature, voice (which also has a physical component), keystroke pattern and gait 
are included in behavioral characteristics. 
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  Fig. 5.17    EER calculated for “Raising hand” considering all the subjects. The value of EER is 8.333       
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 Although some technologies have gained more acceptance than others, it is beyond 
doubt that the fi eld of access control and biometrics as a whole shows great potential 
for use in end user segments, such as airports, stadiums, defence installations but also 
the industry and corporate workplaces where security and privacy are required. 

 In this chapter, two emerging biometric technologies, namely Gait and 
Anthropometric profi le, have been presented that exploit the human static and 
dynamic body characteristics for human recognition. Even if these technologies 
are mature, their high authentication accuracy has been demonstrated and their 
deployment in existing or new biometric security solutions has been indicated in 
order to: (i) improve the reliability and accuracy of the multimodal biometric 
frameworks, (ii) provide new means of unobtrusive subject authentication based on 
activity-related signals and (iii) to ignite further research on emerging and second 
generation of biometrics that exploit high recognition performance and take into 
account user privacy and convenience.      
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