
Exhaled air temperature in asthmatic
children: a mathematical evaluation

Faster rise of exhaled breath temperature was
reported as a marker of airway inflammation (1,
2) in adult asthmatics by evaluating the rate of
temperature increase (De�T) between the begin-
ning of exhalation and 63.2% of the total
increase (3). This parameter was found to be
significantly higher in both intermittent and
persistent asthmatics than in controls and to
positively correlate with exhaled nitric oxide
(eNO) in patients with asthma.
During another study performed in allergic

asthmatic children, a significant relationship
between the plateau of exhaled air temperature
(PLET) and eNO was observed (4). Furthermore,
house dust mite (HDM) avoidance in a high-
altitude, low-humidity environment was associ-
ated, in HDM-sensitive asthmatic children, with
both a reduction in sputum eosinophil cell counts
and PLET, suggesting a possible relationship
between exhaled air temperature and airway
inflammation (5).
However, it was argued that PLET cannot be

separated in the tracing of exhaled temperature

from the peak of exhaled temperature and that
PLET does not distinguish asthmatics from
healthy controls (6). As no healthy children have
been previously studied, the aim of this study was
to verify the ability to distinguish asthmatics
from normal controls by a dedicated detailed
mathematical evaluation of the exhaled air curve
under controlled conditions of temperature and
humidity in a large number of children.

Methods
Patients

Ninety children (50 male, 40 female) with mild or
moderate asthma (7) ranging in age between 9
and 16 yr (mean ± s.d. = 12.6 ± 2.25), with
no exacerbations and no systemic steroid treat-
ment in the previous 2 months were enrolled in
the study.
All of them received the appropriate controller

treatment according to the severity of the disease (8),
i.e. low-dose inhaled corticosteroids, administered
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Recently, the exhaled breath temperature has been proposed as a
potential marker for the evaluation of airway inflammation in asthma.
The purpose of this study was to verify the ability to distinguish asth-
matics from normal controls by a dedicated detailed mathematical
evaluation of the exhaled air curve. Analysis was performed in the
different phases of the curve of exhaled temperature, i.e. the rate of
temperature increase (De�T) and the mean plateau value. Principal
components analysis (PCA) and artificial neural networks (ANNs) were
used for the evaluation of the data in 90 asthmatic children and in 33
healthy age-matched controls. Both PCA and ANNs showed that a
separation between patients and controls can be obtained only by the
evaluation of the plateau phase of the curve, which better reflects the
periphery of the airway.
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with an add-on therapy with long-acting b2-
agonists or a leucotriene receptor antagonist for
the group with moderate persistent disease.
Thirty-three healthy controls (18 male, 15

female) ranging in age between 12 and 13 yr
(mean ± s.d. = 12.45 ± 0.50) were also evalu-
ated in the same period.
No subjects with cardiac or lung malformation,

with current infectious febrile diseases or with
metabolic diseases, were not included in the study.
Neither patients nor controls were smokers.

Study design

Children were evaluated in the morning and
exhaled breath temperature was measured after
at least 1 h of rest in the laboratory where the
temperature in the range 20–22�C and the
humidity between 45% and 55% were always
maintained. During this time, children were
asked to avoid running or doing any vigorous
play. Body temperature was always measured at
the ear using an instant thermometer (Thermo-
Scan pro LT, Type 6007, professional model,
Braun; ThermoScan Inc., San Diego, CA, USA)
and exhaled air temperature was evaluated dur-
ing a slow expiratory manoeuvre from total lung
capacity. Three measurements were performed
allowing 10 min of rest between evaluations to
avoid interference caused by repeated efforts.
This method allowed a training effect, which may
have contributed to better performance of chil-
dren. Therefore, only measures obtained by the
last manoeuvre were considered for statistical
analysis and mathematical evaluation. Long-
acting b2-agonists were stopped 24 h and short-
acting 12 h before evaluation to avoid any
influence of vasoactive medications on exhaled
air temperature. The diet of asthmatic and
control children was similar and breakfast was
avoided in the morning of the study.
Approval for the study was obtained from the

Local Hospital Ethical Committee and written
consent was obtained from the parents of all the
children.

Exhaled breath temperature measurement equipment and
evaluation

The temperature of the exhaled air was evaluated
using a COCO-001-T thermocouple (Unsheathed
Fine Gage T/C; Omega Engineering Inc., Stam-
ford, CT, USA). To reduce the variability of the
expiratory manoeuvre and to assure the closure
of the soft palate to prevent nasal air contami-
nation a restrictor of flow (HTF 50191-01
Restrictor; Sievers Instruments, Inc., Boulder,

CO, USA) was applied immediately after the
sensor. In these conditions, it was possible to
reach a plateau in exhaled air with a flow of
90 ± 10 ml/s. The COCO-001-T thermocouple
is one of the commercially available thermocou-
ples with the lowest thermal inertia, resulting in a
response time (i.e. the time required to register
the 63.2% of an instantaneous change in tem-
perature) of 45 ms. The sensor was placed within
a T plastic tube between the mouthpiece and the
flow restrictor. Digital data were sampled with a
frequency of 200 Hz and 12 bits (error <
0.005�C/least significant bit) and were transmit-
ted to a personal computer for the evaluation
and storage of the data.
By means of a dedicated software, which was

developed for the real-time display of the curve,
it was possible to characterize at least four main
phases of the expiratory air temperature pattern.
Part A and part D corresponded to the phases of
approach and separation from the mouthpiece
(Fig. 1). The rapid increase in temperature at the
beginning of exhalation was described by the
zone B of the tracking. The intermediate part of
the curve (zone C) was the segment where the
PLET was located.

Statistical analysis

The mean value of temperature at the plateau
(mvPLET) and the rate of the exhaled air
temperature increase (De�T) were determined.
mvPLET was calculated on the mean of different
values in the part of the curve where the
temperature was included within a range of
0.5�C at least for 2 s.

De�T, expressed as �C/s, was calculated
between the beginning of exhalation and 63.2%
of the total temperature increase (Fig. 2).
A statistical analysis of mvPLET and De�T was

performed for the two groups of subjects by
Student�s t-test. Data are reported as mean ± s.d.
Significance was defined as a p-value of <0.05.

Mathematical evaluation

A pattern recognition analysis (9) was performed
throughout the evaluation of several samples of
exhaled air temperature for each subject. This
allows a better definition of the phenomena than
the simple evaluation of the two variables
mvPLET and De�T.
In particular, in our study, we considered for

any subject 150 values of temperature obtained
from the zone B (point of rapid rise in temper-
ature) and zone C (plateau) of the curve (Fig. 2).
Successively, to reduce the number of variables,
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a separate analysis of 50 points from zone B and
100 points in zone C was performed in each
single subject.
The principal component analysis (PCA) (10)

was employed to classify the population under
study by means of single variables and mvPLET
and De�T. PCA is a mathematical procedure that
transforms a number of possibly correlated
variables into a smaller number of uncorrelated
variables, which are ordered by reducing vari-
ability, called principal components. The same
data were then evaluated using the technique of
artificial neural networks (ANNs) (11, 12).

Principal components analysis

The first principal component accounts for as
much of the variability in the data as possible,
and each succeeding component accounts for as
much of the remaining variability as possible.
The uncorrelated variables are linear combina-
tions of the original variables, and the last of

these variables can be removed with minimum
loss of real data. The aim of PCA was to
discover or to reduce the dimensionality of
the data set and to identify new meaningful
variables.
Without loss of generality, let us assume that

input data matrix X has zero empirical mean. We
want to find a orthonormal projection matrix P
such that:

Y ¼ PTX

where Y matrix is the matrix of the principal
components and with the constraint that the
covariance matrix of the principal components,
cov(Y), is a diagonal matrix and P)1 = PT. By
substitution and matrix algebra, it can be dem-
onstrated:

covðXÞ ¼ P covðYÞPT

The most used mathematical method to calcu-
late the orthonormal projection matrix P is the
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singular value decomposition (SVD). Defining a
general N · M matrix as A, the SVD theorem
states:

A ¼ URVT

where U is an N · M unitary matrix whose
columns are the left singular vectors; S is an
M · M diagonal matrix of singular values; and
VT is aM · M unitary matrix whose rows are the
right singular vectors. U elements (vectors) form
an orthonormal set, VT elements (vectors) form
an orthonormal set, and S is diagonal.
Considering as orthonormal set, i.e. P matrix

elements, the eigenvectors of cov(X), it follows
that the matrix cov(Y) becomes diagonal, which
elements are the eigenvalues of cov(X):

covðYÞ ¼

k1 0 ::: 0
0 k2 ::: 0
:
:
0 ::: km

2
66664

3
77775

Thus, the SVD, finding the eigenvalues and
eigenvectors of the covariance matrix of data,
i.e. the diagonalization of the covariance matrix,
represents an expansion of the original data in a
coordinate system where the covariance matrix is
diagonal. The orthonormal projection matrix P
is also called score matrix.

Artificial self-organizing neural networks

The concept of ANNs is to imitate the structure
and workings of the human brain by means of
mathematical models (13). ANNs possess an
adaptable knowledge that is distributed over
many neurons and synaptic connections. The
structure of the single neuron model, the
network topology and the adaptation strategy
(learning rule) define the ANN architecture. The
neurons (processing units) are single elements
and consist principally of a connection function,
an input function, an activation (transfer) func-
tion, and an output function. A neuron receives
signals via several input connections. These are
weighted at the input to a neuron by the
connection function. The weights define the
coupling strength (synapses) of the respective
connections and are established via a learning
process, in the course of which they are mod-
ified according to given patterns and a learning
rule. In the case of supervised learning, in
addition to the input patterns, the desired
corresponding output patterns also presented

to the network in the training phase. In the case
of unsupervised learning, the network is re-
quired to find classification criteria for the input
patterns independently. Stochastic learning
methods employ random processes and proba-
bility distributions to minimize a suitably
defined energy function of the network. A large
number of neural models now exist, and each of
these models is available in various forms. The
Integrand-and-Fire (IF) neuron model is often
used to implement ANNs suitable for classifi-
cation and forecast tasks (14). The multi-layer
perceptron (supervised learning), the self-orga-
nizing map (unsupervised learning) and the
Kohonen self-organizing map (KSOM) (15)
are examples of ANN architectures based on
the IF neuron model. For the purpose of this
study, KSOMs were applied.
A KSOM maps the input data into a two-

dimensional net of artificial neurons to solve
classification tasks and to find structures in
data. Data set is partitioned in a training data
set and a test data set. Firstly, in the unsuper-
vised training process, the synaptic weight
vectors of the artificial neurons of the KSOM
are adapted by means of the training data set
examples in such a way that the KSOM
supplies as good a representation as possible
of the training data set. The synaptic weight
vector of an artificial neuron of a KSOM
corresponds to the feature vector of an object
in the feature space under study. During the
training process of a KSOM, a winner-takes-it-
all training algorithm is performed. For each
m-dimensional input vector belonging to the
training data set fk ¼ fk;1; . . . ; fk;m, the generic
artificial neuron i that has the minimum
distance di ¼ fk � wi

�� �� from the input vector
and the synaptic weight vector wi, is the
winning unit z. During each time step t, an
input vector fk is randomly selected from the
training data set. Epoch time T is defined as
the t time steps in which all the input vectors
are selected. The training process goes on for
a finite number of epochs. The weight wij

of the synapse connecting the jth element of
the randomly selected input vector, fk,j, with
the ith artificial neuron at the time step t and
epoch T is modified as follows:

wijðtÞ ¼ wijðt� 1Þ þ aðTÞri Tð Þ fk;jðtÞ � wijðt� 1Þ
� �

where:

• a(T) = faa(T ) 1), learning rate with a learn-
ing rate factor fa. The learning rate factor is in
the range ]0,1[.
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• riðT Þ ¼ expð�D2
i =r

2Þ, feedback function of ith
neuron. Di determines the Euclidean distance
of neuron ith to the winning neuron z on the
KSOM.

• r(T) = frr(T ) 1), learning radius with
learning radius factor fr. The learning radius
factor is in the range ]0,1[.

The learning rate and the learning radius thus
fall off exponentially during training so as to
bring the artificial neurons to a state of
equilibrium.
After the training process, a second super-

vised labelling step is performed. Cluster labels
are assigned to the individual artificial neurons.
This is performed via the interpretation of the
content of the synaptic weight vectors (feature
vectors) of the artificial neurons. Here, the same
label can be assigned to several artificial neu-
rons. Thus, a cluster is represented by several
artificial neurons in the KSOM. After validation
of the KSOM by examples of test data set,
performance of the classification task is com-
monly evaluated using the confusion matrix.
The generic element cij of the confusion matrix
indicates how many times in percentage, a
pattern belonging to the class i was classified
as belonging to the class j.
Three different KSOM architectures, 4 · 4,

5 · 5 and 10 · 10 artificial neurons, were
trained and tested. For each architecture, we
fixed a(0) = 0.999, fa = 0.99, r(0) = 5,
fr = 0.995 parameters and a training of
10,000 epochs.
To check the classification capability of the

KSOM, data sets belonging to B and C zones
were analysed. To check the generalization
capability of the neural network, a K-fold
cross-validation was carried out. Cross-valida-
tion is one of several approaches to estimating
the performance of a model on future as-yet-
unseen data. In K-fold cross-validation, the
original data set is partitioned into K subsets.
For each cross-validation step, a single subset
is retained as the test set, and the remaining
K ) 1 subsubsets are used as the training set.
The cross-validation process is then repeated K
times, with each of the K subsets used exactly
once as the test set. The K results from the
folds then can be averaged (or otherwise
combined) to produce a single estimation. In
this work, a threefold cross-validation was
applied; each fold consisted of randomly
selected 11 people with asthma and 30 control
subjects. Three different KSOM architectures,
5 · 5, 10 · 10 and 15 · 15 artificial neurons,
were trained and tested.

Results

Body temperature of the children ranged between
36.6 and 37.0�C without any statistically signif-
icant differences between asthmatic children and
controls.
Means and standard deviations of mvPLET

and De�T are reported in Table 1. As can be seen,
mvPLET was significantly higher (p < 0.0001)
in asthmatic children than in controls, whereas
this was not the case for De�T (Fig. 3).
The results of the PCA are expressed in

Fig. 4. Fig. 4a represents the �circle of correla-
tion� which indicates the contribution of the
single variable to the final information. Accord-
ing to the arrow direction shown in Fig. 4a, the
variables are reported with increasing values,

Table 1. Average and the standard deviation values for asthmatic children and
control subjects

Asthmatic children Control subjects p

mvPLET (�C) 31.15 € 1.19 30.27 € 1.25 <0.0001
De�T (�C/s) 116.43 € 87.05 120.90 € 95.90 0.83

mvPLET, mean value of temperature at the plateau.
De�T, rate of temperature increase.
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starting from the first value selected in the zone
of rapid rising of temperature up to the last
value selected in the plateau area. In this
system, the values which are closer to 1.0 give
the highest contribution to the information. As
can be seen, the major share to the information
is given by the data taken from the plateau
area (Fig. 4a) and the two populations (asth-
matic children and healthy controls) are clearly
separated into two clusters (Fig. 4b) even if
there is a partial overlap.
To reduce the number of variables, so that it is

possible to understand better which part of the
curve gives the larger contribution to the infor-
mation, 50 points in zone B (rapid raising of
temperature) (Fig. 5a) and 100 points in zone C
(plateau) (Fig. 5b) were evaluated by PCA.
Again, the major contribution to the information

comes from the values selected in the plateau
area.
The results of the ANN are reported in Fig. 6.

A topological analysis of the KSOM¢s status
after training showed the presence of two non-
overlapped regions for each pattern of the
training data set. To quantify results obtained
in the threefold cross-validation, a labelling
process allowed the two regions to be classified
into class, i.e. people with asthma and control
subjects. Table 2 summarizes the percentages
of the mean confusion matrix that resulted from
the averaged threefold cross-validation results of
the three KSOM configurations. As mentioned
above, the generic element cij of the confusion
matrix indicates how many times in percentage a
pattern belonging to the class i was classified as
belonging to the class j.

Discussion

Data from this study show that mvPLET but not
De�T is able to distinguish between asthmatics

Fig. 4. Principal components analysis on zone B (rapid rise
of temperature) and zone C (plateau): first variables are not
close to the circle of correlation (a), showing they are not
significant for cluster separation (b). As the number of
variables belonging to zone C is greater than the number of
variables belonging to zone B, cluster separation is
performed.

Fig. 5. (a) Principal components analysis on zone B (rapid
rise of temperature): clusters belonging to the two groups
(asthmatic children and control subjects) appear to be par-
tially overlapped. (b) Principal components analysis on zone
C (plateau): high cluster separation accuracy is obtained.

Pifferi et al.

6



and healthy children. To reduce possible con-
founding factors, all the measurements were
performed in the morning, after at least 1 h of
rest in an environment with controlled air tem-
perature and humidity. In particular, the timing
of temperature assaying, i.e. in the morning for
all the children, was decided when planning the
experimental design of this study to rule out the
possible interference of physical activity and that
of circadian body temperature variations. The
potential effect of such variations on exhaled
breath temperature needs to be assessed with a
dedicated study.
A possible explanation for the discrepancy

between our results and those obtained by
another group (3) may come in part from the
faster time of response of the thermocouple we
employed which results in a shorter phase of
temperature rise at the beginning of exhalation
and, as a consequence, in a greater De�T value.
This technical difference, with a more advanced
instrument in this study, could, in part, account
for a different shape of the rising part of the
curve, where De�T is calculated, therefore reduc-
ing the possibility of making a direct comparison
of the data generated in these two studies.
Nevertheless, the most innovative issue in this
study is represented by the detailed evaluation of
150 points of the exhaled air curve by means of

PCA. With this analysis, a clear separation of the
population under study into two clusters, i.e.
asthmatic and healthy children, came out only by
the plateau phase of the exhaled temperature
curve (Fig. 4b). Furthermore, it seems reason-
able to speculate that the mathematical expres-
sion of the phenomenon by using the two values
De�T and mvPLET is a too coarse simplification
associated with a meaningful loss of information.
The single analysis of De�T would suggest the
expression of a mathematical model with a single
exponential. However, our data suggest that the
exhaled breath temperature curve is better rep-
resented by a complex function with the involve-
ment of multiple exponentials. In this regard, the
PCA, performed separately in 50 points of the
faster rising part of the curve and in 100 points of
the plateau, clearly indicates that the major
information comes from the plateau (Fig. 5b).
The evaluation of 100 points of the plateau
resulted in a further better separation of asth-
matics from controls than the simple use of the
mvPLET.
As a further step in the analysis, we used the

self-learning model based on ANNs, a complex
and flexible non-linear system with properties not
found in other modelling systems. These proper-
ties include robust performance in dealing with
noisy or incomplete input patterns, high fault
tolerance and the ability to generalize from the
input data (16). Models based on ANN are
applicable in the diagnosis of different diseases as
well as in waveform analysis of EKGs, EEGs and
radiographic images (17). The mathematical
evaluation of our data, with the use of ANNs,
reinforces the possibility of distinguishing
between asthmatics and healthy subjects by the
evaluating exhaled air temperature in the plateau
phase of the curve.

Fig. 6. A topological analysis of the Kohonen self-organizing maps (KSOMs) status after training showed the presence of two
nonoverlapped regions for asthmatic and non-asthmatic subjects for each pattern of the training data set. The figure reports
three different KSOMs� configurations: (a) KSOM 5 · 5 (b) KSOM 10 · 10 and (c) KSOM 15 · 15.

Table 2. Average and the standard deviation of the confusion matrix that
resulted from the threefold cross-validation process of the three Kohonen
self-organizing maps configurations

Temperature classified status

Asthmatic Control

True asthmatic children 99.3 € 0.5 0.7 € 0.5
True control subjects 29.3 € 3.9 70.7 € 3.9

Exhaled air temperature in asthma
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These findings are consistent with the hypoth-
esis that the end of expiration is more directly
reflecting the degree of inflammation occurring in
small airways where a ventilation limitation has
to be expected even during period of disease
control (18).
Thus, the better performance obtained with the

plateau phase of the curve may be assimilated to
the improved performance of small airways� lung
function testing in detecting airways� obstruction
during asymptomatic periods in asthmatic chil-
dren (19, 20) and reflects the importance of
peripheral lung mechanics in asthma (21, 22).
In conclusion, the mathematical evaluation of

the curve tracing exhaled air temperature con-
firms and further extends the possibility of using
breath temperature in distinguishing asthmatics
from healthy subjects.
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