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ABSTRACT: Psycholinguistic evidence based on inflectional and derivational 
word families has emphasised the combined role of Paradigm Entropy and 
Inflectional Entropy in human word processing. Although the way frequency 
distributions affect behavioural evidence is clear in broad outline, we still 
miss a clear algorithmic model of how such a complex interaction takes place 
and why. The main challenge is to understand how the local interaction of 
learning and processing principles in morphology can result in global effects 
that require knowledge of the overall distribution of stems and affixes in word 
families. We show that principles of discriminative learning can shed light on 
this issue. We simulate learning of verb inflection with a discriminative 
recurrent network of specialised processing units, whose level of temporal 
connectivity reflects the frequency distribution of input symbols in context. 
We analyse the temporal dynamic with which connection weights are 
adjusted during discriminative learning, to show that self-organised 
connections are optimally functional to word processing when the 
distribution of inflected forms in a paradigm (Paradigm Entropy) and the 
distribution of their inflectional affixes across paradigms (Inflectional 
Entropy) diverge minimally. 

KEYWORDS: discriminative learning, word processing, recurrent neural net-
works, relative entropy. 

1. INTRODUCTION1  

Families of morphologically-related words, be they word paradigms (inflected 
forms of the same lemma), inflectional series (identically-inflected forms of 
different lemmas), derivational families (morphologically-complex words 
sharing the same root) or derivational series (morphologically-complex words 
                                                 
1 Authors are alphabetically ordered. Marcello Ferro developed the TSOM software and ran 
experiment 1 and experiment 2 on Italian and Greek; Claudia Marzi ran experiment 2 on Ger-
man and Spanish, conducted data analysis and statistical modelling of the results; Vito Pirrelli 
framed the theoretical and mathematical background. Implications and concluding remarks 
were jointly discussed. Claudia Marzi and Vito Pirrelli critically revised the paper. 
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sharing the same derivational affix), have received increasing attention over 
the last 25 years. Considerable emphasis has been laid on the role of paradig-
matic relations as principles of non-linear organisation of word forms in the 
speaker’s mental lexicon, facilitating their access, retention and use (Baayen 
et al. 1997; Orsolini & Marslen-Wilson 1997; Bybee & Slobin 1982; Bybee 
& Moder 1983, among others).  

A large body of cognitive literature on similarity-based principles of word 
co-activation and competition has focused on effects of family size and fre-
quency of neighbouring words on a variety of word processing tasks (Gather-
cole et al. 1997; Luce 1986; Luce & Pisoni 1998; Pitt & McQueen 1998; Vi-
tevitch et al. 1997; Vitevitch & Luce 1998), to highlight an interesting general 
pattern. Large neighbour families tend to have facilitative effects on tasks like 
spoken word production and visual word recognition, but facilitation strongly 
interacts with frequency distributions of family members. Given a written 
word to be recognised, low-frequency neighbours facilitate both visual recog-
nition and production, but high-frequency neighbours exert an inhibitory ef-
fect on the same tasks.  

 More recently, the study of word families prompted a growing interest in 
information-theoretic measures of their structure and organisation (e.g. Acker-
man, Blevins & Malouf 2009). The interactive role of intra-paradigmatic and 
inter-paradigmatic word distributions has been systemically investigated to 
account for their differential effects on visual lexical recognition of both in-
flected (Milin et al. 2009a, 2009b) and derived words (see Kuperman et al. 
2010; Bertram et al. 2000; Schreuder et al. 2003, among others). In particular, 
Milin and colleagues (2009a, 2009b) focus on the divergence between the dis-
tribution of inflectional endings within a single paradigm (measured as the 
entropy of the distribution of paradigmatically-related forms, or Paradigm En-
tropy), and the distribution of the same endings within their inflectional class 
(or Inflectional Entropy). They observe that both paradigm entropy and inflec-
tional entropy facilitate visual lexical recognition: the more uniform the fre-
quency distribution of word forms is in either family, the easier they are to 
process. However, if the two distributions differ, a conflict arises, resulting in 
slower word recognition. The difference between paradigm entropy and in-
flectional entropy is expressed in terms of Relative Entropy through the Kull-
back-Leibler Divergence (or DKL, Kullback 1987), as follows:  

1) 𝐷௄௅(ሺ݁ |𝑠ሻ||݌ሺ݁ሻ) = ∑ ݃݋ሺ݁ | 𝑠ሻ𝑙݌ 𝑝ሺ𝑒|𝑠ሻ𝑝ሺ𝑒ሻ𝑒  
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where ݌ሺ݁|𝑠ሻ is the probability of having a specific inflected form (an ending 
e) given a stem s, and ݌ሺ݁ሻ is the probability of finding e with any s. For each 
paradigm, the larger 1) is, the more difficult is, on average, the visual recog-
nition of members of that paradigm. Similar results are reported by Kuperman 
and colleagues (2010) on reading times for Dutch derived words, and are in-
terpreted as reflecting an information imbalance between the family of the 
base word (e.g. plaats in plaatsing) and the family of the suffix (-ing). 

All these effects are clear in broad outline. They point to a deeply rooted 
interaction between word distributions and word competition in the mental 
lexicon, where inflected forms are concurrently memorised, and synchro-
nously accessed to compete for primacy in processing. Nonetheless, we still 
miss an algorithmic characterisation of the ways local storage and local pro-
cessing functions make the human word processor exquisitely sensitive to 
global frequency effects. Computational models appear to be an ideal tool of 
the trade to investigate these and other related issues. They can provide a de-
tailed, data-driven account of the spontaneous emergence of sensitivity to fre-
quency effects from patterns of language usage. Experiments conducted by 
implementing and running computer simulations of a specific language task 
can be used to understand more of processing behaviour by testing the princi-
pled, cognitively-grounded mechanisms that are assumed to be the cause of 
this behaviour, but are inaccessible to classical psycholinguistic experiments.  

In what follows, we intend to offer and empirically validate a full-fledged, 
connectionist model of these effects, based on principles of discriminative 
learning (Rescorla & Wagner 1972), implemented through recurrent self-or-
ganising neural networks (Ferro et al. 2011; Marzi et al. 2014; Pirrelli et al. 
2015). Section 2 introduces some fundamental information-theoretic equa-
tions. Section 3 illustrates the principles governing discriminative learning 
and their neural network implementation. Section 4 describes experimental 
protocols, materials and results. The theoretical implications of our model are 
discussed in the concluding section. 

2. PARDIGMS AND ENTROPY 

By way of illustration, we consider two artificial mini-paradigms, obtained by 
combining two stems (‘A’ and ‘B’) with two endings (‘X’ and ‘Y’). Table 1 
shows paradigm and inflectional entropic scores of the artificial inflectional 
system. Members of the mini-paradigms are distributed according to the fre-
quencies in Table 1.1. The probability of encountering any inflected form is 
expressed by the joint probability ݌ሺ𝑠௞, ݁ℎሻ of finding the stem 𝑠௞ followed 
by the inflectional ending ݁ℎ, and is calculated as the ratio ݂ሺ𝑠௞, ݁ℎሻ/
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∑ ݂ሺ𝑠௜, ௝݁ሻ௜,௝  (Table 1.2, grey cells). Accordingly, we can express the proba-
bility of selecting one particular inflected form from its own paradigm as ݌ሺ݁ℎ|𝑠௞ሻ, which is the conditional probability of finding one particular ending ݁ℎ given the stem 𝑠௞, or ݌ሺ𝑠௞, ݁ℎሻ/݌ሺ𝑠௞ሻ (Table 1.3). Note that ݌ሺ݁ℎ|𝑠௞ሻ 
equals ݌ሺ݁ℎሻ when knowledge of 𝑠௞ does not reduce the uncertainty about ݁ℎ, 
that is, if the two events are independent and ݌ሺ𝑠௞, ݁ℎሻ = ሺ𝑠௞ሻ݌ ∙ -ሺ݁ℎሻ. Inci݌
dentally, this is the case of our distribution in Table 1. Similarly, ݌ሺ𝑠௞|݁ℎሻ is 
the conditional probability of the stem 𝑠௞ given ݁ℎ, i.e. the probability that 𝑠௞ 
is found with ݁ℎ, when we restrict ourselves to the words ending in ݁ℎ only 
(Table 1.4). The distribution of ݌ሺ𝑠௞|݁ℎሻ gives information about how forms 
are distributed within a paradigm cell. Once more, ݌ሺ𝑠௞|݁ℎሻ equals ݌ሺ𝑠௞ሻ 
when 𝑠௞ and ݁ℎ  are distributed independently.   

1)  X Y ݂ሺ𝑠ሻ 2)  X Y ݌ሺ𝑠ሻ 

 A 56 14 70  A 0.56 0.14 0.7 

 B 24 6 30  B 0.24 0.06 0.3 

 ݂ሺ݁ሻ 80 20 100  ݌ሺ݁ሻ 0.8 0.2 1 

          

 ሺ𝑠|݁ሻܪ ሺ݁|𝑠௜ሻ 4)  X Yܪ ሺܻ|𝑠ሻ݌ ሺܺ|𝑠ሻ݌  (3

 A 0.8 0.2 0.72  ݌ሺܣ|݁ሻ 0.7 0.7  

 B 0.8 0.2 0.72  ݌ሺܤ|݁ሻ 0.3 0.3  

 ሺ𝑠|݁௜ሻ 0.88 0.88 0.88ܪ  ሺ݁|𝑠ሻ   0.72ܪ 

TABLE 1. PARADIGM-BASED WORD DISTRIBUTIONS ILLUSTRATED WITH 2 MINI-PARADIGMS OF 2 

FORMS EACH. FREQUENCY DISTRIBUTIONS (1) ARE TRANSFORMED INTO WORD PROBABILITIES (2), 
PARADIGM PROBABILITIES (3) AND INFLECTIONAL CLASS PROBABILITIES (4). 

For all these probability distributions, we can calculate their respective 
entropy, and measure how uniform they are. We start from Table 1.2, with the 
stem entropy ܪሺ𝑠ሻ, defined as: 

ሺ𝑠ሻܪ (2 = − ∑ ௝݃݋ሺ𝑠௝ሻ𝑙݌ (𝑠௝)݌ = Ͳ.ͺͺ 

Similarly, the inflectional entropy ܪሺ݁ሻ is given by: 

ሺ݁ሻܪ (3 = − ∑ ሺ݌ ௝݁ሻ𝑙݃݋௝ )݌ ௝݁) = Ͳ.͹ʹ 

The paradigm entropy ܪሺ݁|𝑠௞ሻ is calculated in Table 1.3 according to 
equation 4):  

ሺ݁|𝑠௞ሻܪ (4 = − ∑ ሺ݌ ௝݁| 𝑠௞ሻ𝑙݃݋௝ ሺ݌ ௝݁|𝑠௞ሻ 
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By averaging the sum of the paradigm entropies of our two mini-para-
digms (weighted by their probability ݌ሺ𝑠ሻ), we get (Table 1.3):  

ሺ݁|𝑠ሻܪ (5 = ∑ ሺ𝑠௜ሻ௜݌ ሺ݁|𝑠௜ሻܪ = Ͳ.͹ʹ 

which is equal to H(e) in equation 3), due to the distributional independ-
ence between stems and endings. The cell entropy ܪሺ𝑠|݁௞ሻ (or entropy of 
identically-inflected words) measures the distribution of all inflected forms 
ending in ݁௞ as follows:  

ሺ𝑠|݁௞ሻܪ (6 = − ∑ ௜݃݋ሺ𝑠௜| ݁௞ሻ𝑙݌  ሺ𝑠௜|݁௞ሻ݌

Its averaged sum over all endings in an inflection class, ܪሺ𝑠|݁), is calcu-
lated in Table 1.4 according to equation 7) below:  

ሺ𝑠|݁ሻܪ (7 = ∑ ሺ݁௜ሻ௜݌ ሺ𝑠|݁௜ሻܪ = Ͳ.ͺͺ 

Again, due to the independence condition, ܪሺ𝑠|݁ሻ equals ܪሺ𝑠ሻ in equation 
2). Finally, ܪሺ𝑠, ݁ሻ is the entropy of the ݌(𝑠௜, ݁௝) distribution of full inflected 
forms, and is calculated thus: 

,ሺ𝑠ܪ  (8 ݁ሻ = − ∑ ,𝑠௜)݌ ݁௝)௜,௝ log ,𝑠௜)݌ ݁௝) = ͳ.͸ 

Figure 1 is a diagrammatic representation of the relations between ܪሺ𝑠, ݁ሻ, ܪሺ𝑠|݁ሻ, ܪሺ݁|𝑠ሻ and ܫሺ𝑠, ݁ሻ. ܫሺ𝑠, ݁ሻ (known as Mutual Information) is a meas-
ure of the mutual dependence between stems and endings, defined as the di-
vergence of the distribution ݌ሺ𝑠, ݁ሻ from the independence hypothesis ݌ሺ𝑠, ݁ሻ = ሺ𝑠ሻ݌ ∙  :ሺ݁ሻ (Manning & Schütze 1999)݌

,ሺ𝑠ܫ  (9 ݁ሻ = ∑ ,ሺ𝑠௜݌ ௝݁ሻ𝑙݃݋ 𝑝ሺ𝑠೔,𝑒ೕሻ𝑝ሺ𝑠೔ሻ𝑝ሺ𝑒ೕሻ௜,௝   

Using the definition of conditional probability, we can replace ݌ሺ𝑠, ݁ሻ in 
equation 9) with ݌ሺ𝑠ሻ ∙   :ሺ݁|𝑠ሻ, to obtain݌

,ሺ𝑠ܫ (10 ݁ሻ = ∑ ሺ𝑠௜ሻ௜݌ ∑ ሺ݌ ௝݁ | 𝑠௜ሻ𝑙݃݋ 𝑝ሺ𝑒ೕ|𝑠೔ሻ𝑝ሺ𝑒ೕሻ௝   

where ∑ ሺ݌ ௝݁ | 𝑠௜ሻ𝑙݃݋ 𝑝ሺ𝑒ೕ|𝑠೔ሻ𝑝ሺ𝑒ೕሻ௝  is the relative entropy of equation 1) above. ܫሺ𝑠, ݁ሻ can thus be interpreted as the averaged divergence between the distri-
bution of inflected forms within their paradigms (݌ሺ݁|𝑠ሻ) and the distribution 
of their inflectional endings across all paradigms (݌ሺ݁ሻ). In our example, the 
two distributions are identical, hence ܫሺ𝑠, ݁ሻ is empty. This means that 
knowledge of the stems gives no information about the distribution of the end-
ings. Equivalently, we can say the stems exhibit no particular selection pref-
erence for a specific subset of endings.   

DISCRIMINATIVE WORD LEARNING IS SENSITIVE TO INFLECTIONAL ENTROPY

311



 

FIGURE 1. A DIAGRAMMATIC REPRESENTATION OF THE RELATIONS BETWEEN H(S,E), H(S|E), H(E|S) 

AND I(S,E), IN TERMS OF SET INTERSECTION AND SUBTRACTION RELATIONS. I(S,E) IS A MEASURE OF 

THE DIVERGENCE BETWEEN THE DISTRIBUTION OF THE INFLECTED FORMS IN EACH PARADIGM AND 

THE DISTRIBUTION OF THE ENDINGS IN THE CORRESPONDING INFLECTIONAL CLASS, AVERAGED 

OVER PARADIGM PROBABILITIES. 

Finally, if we replace ݌ሺ𝑠, ݁ሻ with ݌ሺ݁ሻ ∙   :ሺ𝑠|݁ሻ in equation 9), we get݌

,ሺ𝑠ܫ (11 ݁ሻ = ∑ ሺ݁௜ሻ௜݌ ∑ ݃݋ሺ𝑠௝ | ݁௜ሻ𝑙݌ 𝑝ሺ𝑠ೕ|𝑒೔ሻ𝑝ሺ𝑠ೕሻ௝   

where ∑ ݃݋ሺ𝑠௝ | ݁௜ሻ𝑙݌ 𝑝ሺ𝑠ೕ|𝑒೔ሻ𝑝ሺ𝑠ೕሻ௝   is the DKL divergence between the probability 

distribution ݌ሺ𝑠ሻ of the stems (rightmost column in Table 1.2) and the distri-
bution of the same stems in identically-inflected forms (shaded columns in 
Table 1.4). As shown in Figure 1, ܪሺ𝑠|݁ሻ ≤ ሺ𝑠|݁ሻܪ ,ሺ𝑠ሻ. Once moreܪ ሺ𝑠ሻ when D௄௅ܪ= = Ͳ, i.e. when endings predict nothing about the distribution 
of stems.   

To sum up, ܫሺ𝑠, ݁ሻ can be interpreted in two symmetrical ways. Firstly, It 
is the distance between the paradigm entropy ܪሺ݁|𝑠ሻ and the inflectional en-
tropy ܪሺ݁ሻ. Secondly, it measures the distance between the cell entropy ܪሺ𝑠|݁ሻ and the stem entropy ܪሺ𝑠ሻ. In fact, ܫሺ𝑠, ݁ሻ quantifies the information 
that s and e share, i.e. how much knowing either variable reduces uncertainty 
about the other. Thus, it works in both directions. In particular, if ݌ሺ ௝݁ | 𝑠௜ሻ ሺ݌> ௝݁), i.e. if an inflected form occurs in a paradigm less frequently than one 
would expect considering the frequency of its inflectional ending, then ݌ሺ𝑠௜ | ௝݁ሻ <  ሺ𝑠௜), i.e. its stem will be under-represented in the corresponding݌
set of identically-inflected forms. As we shall see in more detail in section 3, 
this has important repercussions on the learning behaviour of a recurrent neu-
ral network where forms are concurrently stored and accessed as a function of ܪሺ𝑠|݁ሻ. 
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3. DISCRIMINATIVE WORD LEARNING 

From a discriminative perspective, learning proceeds by discriminating be-
tween multiple cues that are constantly in competition for their predictive 
value for a given outcome (Ramscar & Yarlett 2007; Baayen et al. 2011; 
Blevins 2016). We conjecture that the sensitivity of human word processing 
to effects of paradigm relative entropy reflects the dynamic interaction be-
tween concurrently stored items, due to the superpositional nature of their 
stored representations and the dual function of these representations as pro-
cessing units.   

Work in discriminative word learning has primarily focused on form-
meaning relationships based on highly distributed amorphous representations. 
A recurrent network variant of discriminative learning was recently used with 
one-level self-organising grids of processing nodes known as Temporal Self-
Organising Maps (TSOMs, Ferro et al. 2011; Marzi et al. 2014; Pirrelli et al. 
2015). TSOMs memorise time-series of symbols as chains of specialised pro-
cessing nodes, selectively firing when specific symbols are input in specific 
temporal contexts. TSOMs consist of a bank of input nodes (where input stim-
uli are encoded), and a bank of processing nodes (the map proper), connected 
to input nodes through input connections, and to processing nodes (including 
themselves) through re-entrant temporal connections with one-time delay 
(Figure 2).  

 

FIGURE 2. ACTIVATION (LEFT) AND LEARNING (RIGHT) STEPS IN A TSOM. ‘BMU’ AND ‘~BMU’ 

REPRESENT, RESPECTIVELY, A BEST MATCHING UNIT AND ANY OTHER NODE THAT IS NOT A BEST 

MATCHING UNIT. SUBSCRIPTS INDEX TIME TICKS. 

At each time tick t, activation flows from the input layer to the map nodes 
through one-way input connections (Figure 2, left panel). Re-entrant temporal 
connections update each map node with the state of activation of all nodes at 
the previous time tick (t-1). Like with classical Recurrent Neural Networks 
(Elman 2009), a word is input to a TSOM one symbol S at a time. Activation 
spreads through both input and temporal connections to yield an overall state 
of node activation, or Map Activation Pattern for S at time t: MAPt (S). The 
node with the top-most activation level in MAPt (S) is called the Best Matching 
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Unit for S at time t, or BMUt (S). A time series of sequentially activated BMUs 
will hereafter be referred to as a BMU chain.  

 Weights on temporal connections encode how strongly the current BMUt 
is predicted by BMUt-1, ranging continuously from 0 to 1. Temporal connec-
tion weights are trained on input data according to the following principles of 
correlative learning, strongly reminiscent of Rescorla & Wagner (1972) dis-
criminative equations (Figure 2, right panel). Namely, when the bigram ‘AX’ 
is input, a TSOM goes through two learning steps:  

(i) the temporal connection between BMUt-1 (A) and BMUt (X) (upwards 
thick arrow in Figure 2, right) is strengthened (entrenchment); 

(ii) all other temporal connections to BMUt (X) (dashed arrow in Figure 2, 
right) are weakened (competition). 

It is useful to consider the effects of the learning steps in some detail. Ow-
ing to step (i), connection strength increases as a function of how often the 
connection is traversed leaving a particular node. Interaction with step (ii), 
however, makes strengthening conditional on how often a connection is trav-
ersed to arrive at a specific node. This is illustrated in Figure 3, which provides 
a graph-like representation of BMU chains trained on the probability distribu-
tion of the mini-paradigms in Table 1 above. In the left panel, transition prob-
abilities are conditional on stems: for example, p(X|A) = 0.8 says how much 
of the probability mass of ‘A’ is channelled through the ‘X’ connection. In the 
right panel, probabilities are conditional on endings: p(A|X) = 0.7 says how 
much of the probability of ‘X’ comes from ‘A’. This is useful to understand 
how competition effects are modulated by frequency distributions.  

 

FIGURE 3. A GRAPH-LIKE REPRESENTATION OF BMU CHAINS TRAINED ON TWO MINI-PARADIGMS, 
ACCORDING TO THE FORWARD (LEFT) AND BACKWARD (RIGHT) PROBABILITY DISTRIBUTIONS OF 

TABLE 1. ‘#’ AND ‘$’ ARE, RESPECTIVELY, THE START-OF-WORD AND END-OF-WORD SYMBOLS. 

According to step (ii), the strength of the A-X connection is conditional 
on the occurrence of the ‘X’ event, and is modelled by the backward proba-
bility distribution p(A|X). This means that the strength of A-X is a function of 
how often ‘A’ occurs with ‘X’ compared with how often ‘X’ follows any other 
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stem s: namely p(A,X)/p(X). The entropy H(s|X) thus measures a memory ef-
fect. It says how many different stems the node ‘X’ can combine with: the 
larger the number, the higher H(s|X). As a result of this dynamic, a map node 
with a high backward entropy tends to be less predictive than a node with a 
low backward entropy, as the former must keep memory of many preceding 
contexts and thus expects more possible forward continuations of these con-
texts.2  

In a combinatorial system like verb inflection, being predictive is also a 
function of regularity. In regular paradigms, stems combine with endings more 
systematically than in irregular paradigms. For this reason, they turn out to be 
more uncertain to process at the stem-ending boundary than irregular stems 
are, due to the larger number of endings they are followed by. Irregular stems 
are more predictive, as they typically select a specific subset of endings only. 
Hence, the forward entropy H(e|s) of a regular stem is higher than the forward 
entropy of a stem allomorph in an irregular paradigm. 

Backward and forward entropies are not the only factors affecting word 
processing in TSOMs. Although nodes with higher forward entropies are less 
predictive than nodes with lower forward entropies are, the distribution of 
endings within a paradigm is predicted more accurately when it is close to the 
distribution of endings across the entire inflectional system. To understand 
why, it is useful to remind that, owing to learning step (ii), the strength of each 
stem-ending connection is competitively affected by the probability mass of 
all other stems selecting the same ending. The probability distribution p(s) of 
all stems is, in fact, a weighted centroid of the probability distributions p(s|e) 
of the same stems in their paradigm cells. The closer p(s|e) is to p(s), the more 
evenly an inflected form in a given paradigm is competing with identically 
inflected forms in other paradigms. The cell entropy H(s|e) measures this level 
of competition, with higher values corresponding to a more balanced compe-
tition. In particular, we know from Figure 1 that: 

ሺ𝑠|݁ሻܪ (12 = ሺ𝑠ሻܪ − ,ሺ𝑠ܫ ݁ሻ 

where, for H(s) being held constant, H(s|e) goes up as I(s,e) approaches 0. 
This means that the most balanced competition between BMU chains respond-
ing to identically inflected words is obtained when stems and endings are in-
dependently distributed (see section 2). As we change the probability distri-
bution of Table 1, while keeping the marginal probabilities p(s) and p(e) fixed, 

                                                 
2 TSOMs are biased towards learning the most discriminative such chains, i.e. those chains 
where each node is preceded by the smallest possible number of equiprobable nodes, given the 
resources available. This is achieved through context-sensitive specialisation. Memory re-
sources allowing, symbols that are preceded by different contexts tend to be processed by dif-
ferent, specialised BMUs. 
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we shift away from an optimally balanced competition between inflected 
forms, towards a suboptimal distribution where some forms compete more or 
less strongly than one would expect considering their stem probability.  

Finally, due to the symmetry of the relationships depicted in Figure 1, also 
the following equation is true: 

ሺ݁|𝑠ሻܪ (13 = ሺ݁ሻܪ − ,ሺ𝑠ܫ ݁ሻ 

By varying I(s, e) we are in fact also varying, by the same amount, the 
distance between the distribution of the endings in their inflectional class and 
the distribution of the same endings within each verb paradigm. 

4. MATERIALS AND METHODS 

To assess the role of relative entropy in the processing of paradigm-based in-
flectional systems, we ran two experiments. In the first experiment, a TSOM 
was trained on a set of artificial mini-paradigms, whose frequency distribution 
was varied to control for ܪሺ݁ሻ and ܪሺ݁|𝑠ሻ. For each different distribution, we 
repeated a complete training session 100 times, and assessed trained TSOMs 
both structurally, i.e. in terms of levels of temporal connectivity, and function-
ally, i.e. by looking at their processing behaviour. The experiment aimed to 
highlight main trends, and disentangle hierarchical factor interactions.  

In the second experiment, we looked for similar trends in the inflectional 
systems of four different languages: German, Italian, Modern Greek and Span-
ish. A homogenous sample of 50 sub-paradigms was selected among the most 
highly frequent paradigms in each language. Frequency distributions were 
made vary across two different training protocols. To control for random var-
iability, the same protocol was repeated 5 times.   

Results were analysed using Generalised Additive Models (GAM), with 
probability and entropy distributions of training data as predictors.   

4.1 Experiment 1 

Starting with an artificial set of three mini-paradigms, we created 729 different 
training regimes with all possible combinations of three frequency bins (10, 
100, 1000) in a contingency table like Table 2, which illustrates one such pos-
sible combination. The experiment consisted in training a TSOM on each fre-
quency bin combination.  
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 X Y f(s) 

A 10 100 110 

B 100 100 200 

C 1000 10 1020 

f(e) 1110 210 1320 

TABLE 2. ONE COMBINATION OF THREE FREQUENCY BINS FOR THREE MINI-PARADIGMS. 

Figure 4 shows how the general trends discussed in section 3 affect the 
development of TSOM connectivity across different training regimes. First, 
an even distribution of inflectional endings in the input brings about a bal-
anced apportioning of connection weights at the stem-ending boundary, which 
grow in strength as the inflection entropy H(e) gets higher (left panel), owing 
to the learning step (ii).  

 

FIGURE 4. GAM PREDICTING CONNECTION STRENGTH AT THE MORPHEME BOUNDARY. FIXED EF-

FECTS ARE PLOTTED SEPARATELY AS H(E) (LEFT PANEL), H(E|S) (CENTRAL PANEL), AND I(S,E) 

(RIGHT PANEL). 

The same holds for the distribution of stems across paradigm cells (central 
panel). For higher values of H(e|s), a TSOM develops stronger connections. 
Once more, we observe a family size effect here. When paradigm members 
are evenly distributed, their corresponding node chains are better allocated 
and, processing resources allowing, also more discriminative. A more skewed 
distribution of the same families has a statistically significant inhibitory effect 
on connection strengths (p-value <.001). This is confirmed by the negative 
slope for growing values of relative entropy averaged across all paradigms in 
our training data, as expressed by the Mutual Information I(s,e).  
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FIGURE 5. GAM PREDICTING PROCESSING SURPRISAL. FIXED EFFECTS ARE PLOTTED SEPARATELY 

AS H(E) (LEFT PANEL), H(E|S) (CENTRAL PANEL), AND I(S,E) (RIGHT PANEL).  

Figure 5 illustrates the neat effects of this structural dynamic on pro-
cessing the mini paradigms. Here, predictors are related to levels of processing 
“surprisal” (Levy 2008), a robust, information-theoretic measure of how un-
expected an input symbol is on the basis of its immediately preceding context.3 
Surprisal is demonstrably correlated with differential, local processing com-
plexity: the higher its value, the more difficult for the map to process a word 
at a particular position in the input string. As the distribution of input endings 
get increasingly uniform across training regimes (left panel), the stem-ending 
transition is likely to be associated with more entrenched node chains. In a 
similar vein, higher values of paradigm entropy H(e|s) make processing less 
uncertain at the stem-ending boundary (central panel). Once more, the result 
is consistent with the idea that a low-entropy paradigm is governed by the 
distribution of few of its members only, which take most of the processing 
resources that the TSOM allocates for the whole paradigm. On average, this 
increases the surprisal in processing paradigm members with low p(e|s). In 
addition, a TSOM finds it increasingly more difficult to process paradigms 
that are more off-centred with respect to the general distributional tendency 
H(e) of their inflectional class. This is shown by the right panel of Figure 5, 
where I(s,e) measures the average distance of paradigm distributions from 
H(e) (see section 2). Intuitively, this means that when the distribution of a 
paradigm diverges from the distribution of its inflectional class, its forms suf-
fer from the competitive pressure of the majority of identically inflected words 
of other paradigms.  

                                                 
3 In its basic form, surprisal is defined as the negative log-probability of the symbol si given its 
left context, or −𝑙݌݃݋ሺ𝑠௜|𝑠1,…,௜−1ሻ. In a TSOM, ݌ሺ𝑠௜|𝑠1,…,௜−1ሻ is approximated by the temporal 
level of activation of BMU(si) divided by the overall level of temporal activation of the map at 
the same time tick.  
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4.2 Experiment 2 

We used four training sets of German, Italian, Modern Greek and Spanish verb 
forms. For each language, the set consists of the 50 top-frequency verb sub-
paradigms of 15 inflected forms, selected from a common pool of paradigm 
cells including present (n=6) and past (n =6) indicative tenses, the infinitive 
(n =1), past participle and gerund/present participle (n =2). A TSOM was 
trained on each set under two training regimes (Marzi et al. 2016, 2018). In 
the first regime, forms were presented with a uniform frequency distribution, 
inputting each item 5 times. In the second regime, the same set of forms was 
presented with realistic frequency distributions, sampled from reference cor-
pora. The two training regimes were simulated 5 times. Frequency distribu-
tions and simulation results were collected and normalised for each language 
separately.  

Our training data included both regular and irregular inflection, in differ-
ent proportions for the four languages, in the two training conditions. To con-
trol for allomorphy, paradigm distributions were based on counting specific 
combinations of stem and affix alternants. In irregular paradigms, this way of 
counting resulted in much finer-grained morphological families than tradi-
tional paradigms and inflectional classes. In line with information-theoretic 
approaches to paradigm-based inference, our distributions reflect the way 
(mostly irregular) paradigms are partitioned into smaller classes of mutually 
implied inflected forms, indexed by a formally unique stem allomorph (Pirrelli 
2000; Stump 2001). Under this view, irregular paradigms consist of a collec-
tion of stem partition classes (Pirrelli 2000), which are defined as families of 
inflected forms that share the same stem allomorph, and select a subset of 
inflectional endings. Regular paradigms, on the other hand, are families of 
inflected forms containing one such partition class only. To illustrate, in the 
Italian irregular paradigm VENIRE ‘come’, the diphthongised stem allomorph 
vien- (as opposed to default ven-) is only found in the second singular (vieni, 
‘you come’) and third singular (viene, ‘(s)he comes’) forms of the present in-
dicative. In particular, in our training set, p(vieni|VIEN-) = 0.01 and 
p(viene|VIEN-) = 0.99. Hence, the corresponding paradigm entropy (0.09) is 
low, and its relative entropy (3.38) is twice as much as the average relative 
entropy of a regular paradigm (1.56). This way of operationalising stem par-
tition classes allows us to capture gradient levels of irregularity in complex 
inflectional systems. 

DISCRIMINATIVE WORD LEARNING IS SENSITIVE TO INFLECTIONAL ENTROPY

319



The plots in Figure 6 parallel those in Figure 4 for mini-paradigms.4 As 
expected, increasing values of p(e|s) strengthen the connections to nodes re-
sponding to inflectional endings (left panel).5 This is a straightforward result 
of memory entrenchment, modelled by learning step (i). Like in Experiment 1, 
H(e|s) has a statistically significant facilitative effect (p-value<.001) on the 
entrenchment of stem-ending connections (Figure 6, central panel). For com-
parable values of p(e|s), inflected forms in high-entropy paradigms develop 
stronger connections at the stem-ending boundary. We can explain this as a 
paradigm regularity effect. In regular paradigms, stem partition classes con-
tain more forms and more evenly distributed ones than they do in irregular 
paradigms. In our training set, paradigm entropy in regular paradigms is sig-
nificant larger than in irregulars for all four languages (p-values< .001). This 
implies that forms in regular paradigms enter a more balanced competition 
than irregulars do, and this favours word acquisition and processing. 

 

FIGURE 6. GAM PREDICTING THE MINIMUM VALUE OF CONNECTION STRENGTH ON ENDINGS. FIXED 

EFFECTS ARE PLOTTED SEPARATELY AS P(E|S) (LEFT PANEL), H(E|S) (CENTRAL PANEL), AND DKL 

(RIGHT PANEL). 

The inhibitory effect of relative entropy (DKL, right panel in Figure 6) is 
another, subtle consequence of family-based competition. Those paradigms 
whose distributions are closer to the distribution of the endings in the corre-
sponding inflectional class are likely to develop more entrenched node chains. 

                                                 
4 Unlike in Experiment 1, the data points of Experiment 2 do not represent the average behav-
iour of a TSOM for each distinct training regime, but the response of a TSOM to individual 
inflected forms for the four languages considered. 
5 Here, we select the node with the minimum incoming connection strength on incoming con-
nection. Elsewhere (Marzi et al. 2018), we showed that this node typically marks the stem-
ending boundary. Nonetheless, its position may occasionally vary, depending on the possible 
presence of linking elements between the stem and the inflectional ending proper (e.g. thematic 
vowels). 
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As shown in section 2, DKL measures the distributional dependence between 
stems and endings, and, ultimately, the extent to which each stem competes 
with all other stems in the inflectional class. It is interesting to note that this 
dependence correlates with inflectional regularity. In our training set, regular 
paradigms exhibit significantly lower levels of DKL than irregulars do (p-value 
< .001). In addition, high entropy paradigms show low DKL. 

Figure 7 plots the processing effects of these structural trends. Here, p(e|s) 
shows a clear facilitative effect (left panel). Due to entrenchment, more likely 
inflected forms in their paradigms recruit more processing resources (i.e. more 
dedicated node chains), and this lowers processing surprisal. Likewise, the 
processing of higher entropy paradigms (central panel in Figure 7) is slightly 
but significantly facilitated (p-value <.001). Finally, relative entropy (right 
panel in Figure 7) has a rather clearer effect on processing complexity. When 
the distribution of the forms of a paradigm diverges from the distributional 
centroid of its inflectional class, processing surprisal significantly increases 
(p-value <.001). 

 

FIGURE 7. GAM PREDICTING PROCESSING SURPRISAL. FIXED EFFECTS ARE PLOTTED SEPARATELY 

AS P(E|S) (LEFT PANEL), H(E|S) (CENTRAL PANEL), AND DKL (RIGHT PANEL).  

Notably, the same trends are confirmed by two distinct GAMs predicting 
connection strength and processing surprisal in the uniform training regime 
and in the corpus-based one. Clearly, differences in entropic scores are 
damped in the uniform regime, but they nonetheless reached statistical signif-
icance with all predictors. This shows that the effects are rooted in deep, struc-
tural differences in the data, amenable to the categorical distinction between 
regular and irregular paradigms. We will return to this point in the general 
discussion. 
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5. GENERAL DISCUSSION 

Competition among multiple lexical cues for their discriminative value has 
recently been shown to be key to accounting for fundamental aspects of word 
processing (Baayen et al. 2011; Ramscar & Yarlett 2007; Ramscar et al. 2013; 
Milin et al. 2017). In the majority of discriminative approaches to language 
learning we are aware of, units defined on one level of representation are un-
derstood and modelled to cue units on a different level. For example, forms 
are cues to either lexical or morpho-syntactic content in both Baayen et al. 
(2011) and Ramscar & Yarlett (2007). In the present paper, we showed that 
the same pool of equations going back to Rescorla & Wagner (1972) can 
model the way simple word forms (with no lexical or morphological content) 
are concurrently memorised in a self-organising recurrent neural network 
(TSOM), and compete for primacy during processing through co-activation. 
A TSOM uses discriminative equations to develop maximally efficient BMU 
chains, within a grid of self-organised processing units (nodes) with one level 
of re-entrant temporal connections. Notably, unlike other discriminative learn-
ing models, BMU chains are defined on one representation level only.  

In TSOMs, competition is an effect of the distributed nature of memory 
representations based on node superposition/correlation. Partially overlapping 
members of the same family activate BMU chains that share identical nodes. 
For example, inflected forms belonging to the same paradigm (e.g. walking 
and walked), or filling the same paradigm cell (e.g. walking and speaking), 
trigger node-sharing BMU chains. Entrenchment of shared nodes benefits 
from cumulative exposure to redundant input patterns, making the network 
sensitive to systematic sublexical structures in the input (e.g. the stem walk- 
in walking and walked, or the ending -ing in walking and speaking). Thus, 
larger word families favour entrenchment of shared substructures. Con-
versely, non-shared nodes in partially overlapping memory traces compete for 
time-locked activation primacy in processing, due to the discriminative learn-
ing bias governed by steps (i) and (ii). Thus, other things being equal, their 
temporal connections are modulated by their competition and, ultimately, by 
the entropy H(e|s) of their distribution. Higher paradigm entropies favour a 
balanced allocation of memory resources; so stem-ending connections that are 
traversed with the same probability turn out to be stronger in words whose 
paradigms are more highly entropic. This is in line with evidence of human 
word processing (e.g. Lively et al. 1994; Luce 1986; Luce & Pisoni 1998). 

The same dynamic provides an algorithmic account of evidence that hu-
man visual word processing is facilitated when the distribution of the set of 
inflected forms of a given stem diverges minimally from the distribution of 
the inflectional endings in the stem’s inflectional class (i.e. for low values of 
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paradigm relative entropy). It should be reminded from the discussion of ses-
sion 3 that, when the distribution of endings is independent of the distribution 
of stems, the entropy of the paradigm cell H(s|e) is maximum. As a result, s-e 
connections compete on a par, and get evenly strong during learning. In addi-
tion, maximisation of H(s|e) means that also H(e|s) is maximum (see section 
2).6 This provides the crucial explanatory link between results of our simula-
tions and Milin and colleagues’ evidence on visual word recognition. Words 
in stem families with low relative entropy (DKL) are processed more easily 
than words in families with higher relative entropy because the former mini-
mise competition by both identically inflected words of other paradigms (max-
imum H(s|e)) and differently inflected forms in the same paradigm (maximum 
H(e|s)).  

 

 

FIGURE 8. INTERACTION EFFECTS BETWEEN P(E|S), H(E|S) AND DKL IN A GAM PREDICTING PRO-

CESSING SURPRISAL FOR VERB FORMS IN IRREGULAR (TOP PANELS) AND REGULAR (BOTTOM PAN-

ELS) PARADIGMS IN CORPUS-BASED FREQUENCY DISTRIBUTIONS. 

                                                 
6 Note, however, that the two values do not correlate, since endings can belong to different 
inflectional classes and can combine with partition classes of different size. 
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Figure 8 shows how processing surprisal varies in irregular (top panels) 
and regular (bottom panels) paradigms by levels of paradigm entropy (H(e|s)) 
and relative entropy (DKL). In all four panels there is a tendency for surprisal 
to decrease for increasing levels of paradigm entropy. On average, surprisal is 
significantly higher for forms in regular paradigms than in irregular ones (p-
value <.001). Nonetheless, the facilitative effect of low relative entropy is dif-
ferently modulated by inflectional regularity: forms in regular paradigms ben-
efit more from decreasing relative entropy than irregular forms do.7 

In line with this evidence, inflectional regularity can be described as a ten-
dency of word paradigms to approximate the central distribution of their in-
flectional classes. Regular paradigms are significantly closer to their inflec-
tional centroid, and this gives them a processing advantage. Conversely, in 
irregular paradigms, inflectional endings are strongly selected by specific 
stems in small partition classes, and their paradigmatic distribution typically 
diverges from the central distribution of the whole verb system. They thus 
receive comparatively little global support from other paradigms, and their 
level of entrenchment is mainly governed by token frequencies, as opposed to 
family frequency effects.  

To sum up, our evidence establishes a connection between the paradigm 
relative entropy effect and the family size effect (de Jong et al. 2000; Mulder 
et al. 2014), suggesting that the two are the by-product of the same underlying 
dynamic. In addition, our data highlights an interplay between processing-ori-
ented effects and the categorical distinction between regular and irregular in-
flection. Being regular means being part of large word families, and this facil-
itates the entrenchment of overlapping BMU chains through discriminative 
learning. For instance, regularity prompts the development of dedicated chains 
for the invariant stem of a regular verb paradigm, or the shared ending of a 
paradigm cell. In addition, being regular also means being processed with 
more uncertainty at the stem-ending boundary, because a regular stem typi-
cally combines with all endings of its inflectional class. Nonetheless, we ob-
served that if the paradigm distribution diverges minimally from the distribu-
tion of its endings, processing surprisal is reduced. This is due to the operation 
of discriminative learning, whereby a TSOM develops some general expecta-
tions about the central distribution of inflectional classes. These expectations 
facilitate the processing of regularly inflected forms, making it up for their 
combinatorial behaviour. As expected, the relative entropy effect is only re-
sidual in irregular verb paradigms, where stem allomorphy reduces uncer-
tainty at the stem-ending boundary, skewing stem-ending distributions away 
from their central tendencies.  
                                                 
7 The reducing effect on surprisal of low relative entropy is larger for regulars (slope coefficient 
-0.42, p-value <.001) than for irregulars (-0.23, p-value <.001). 
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In the end, both strategies are effective in reducing word processing un-
certainty. One targets the more idiosyncratic, high frequency portion of a lan-
guage conjugation: the set of irregularly inflected verbs. The other one deals 
with the long Zipfian tail of regulars, which are formed in a combinatorial 
way. In the former case, local frequency effects, based on local allomorphies, 
matter most. In the latter case, global distributional effects appear to carry 
more weight.  It is remarkable that both strategies do not call for independent 
processing modules, but can follow from the local interaction of a single pool 
of discriminative learning principles.  
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