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Machine learning offers two basic strategies for morphology induction: lexical segmentation and

surface word relation. The first approach assumes that words can be segmented into morphemes.

Inferring a novel inflected form requires identification of morphemic constituents and a strategy

for their recombination. The second approach dispenses with segmentation: lexical representa-

tions form part of a network of associatively related inflected forms. Production of a novel form

consists in filling in one empty node in the network. Here, we present the results of a task of word

inflection by a recurrent LSTM network that learns to fill in paradigm cells of incomplete verb

paradigms. Although the task does not require morpheme segmentation, we show that accuracy

in carrying out the inflection task is a function of the model’s sensitivity to paradigm distribution

and morphological structure.

1. Introduction

Following a morpheme-based tradition in morphological inquiry, the process of mor-
phology induction can be defined as the task of singling out morphological formatives
from fully inflected word forms. Formatives are understood to be part of the mor-
phological lexicon, where they are accessed for word recognition, and retrieved and
spelled out for word production. The view requires that a word form be segmented
into meaningful sublexical signs, called morphemes, each contributing a separable piece
of morpho-lexical content. In inflecting languages, typically this holds for regularly
inflected forms, as with Italian cred-ut-o ’believed’ (past participle, from CREDERE ’be-
lieve’), where cred- conveys the lexical meaning of CREDERE, and -ut-o is associated
with morpho-syntactic features. A further assumption is that there always exists an
underlying base form from which all other forms are spelled out. In an irregular verb
form like Italian appes-o ’hung’ (from APPENDERE), however, it soon becomes difficult
to separate morpho-lexical information (the verb stem) from morpho-syntactic infor-
mation (e.g. past participle). Various technical attempts have been made to circumvent
these problems and restore the disrupted biuniqueness between forms and morpho-
sysntactic content in non trivial inflectional systems. In fact, for too many languages,
morpheme segmentation is an ill-defined task, due to notorious problems with the clas-
sical, sign-based notion of morpheme, and the non-segmental processes of introflexive
(i.e. root and pattern), tonal and apophony-based morphologies. So, the assumption that
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any word form can uniquely and consistently be segmented into morphemic sublexical
constituents is at best dubious, and cannot be entertained as a general bootstrapping
hypothesis for morphology learning.

A different formulation of the same task assumes that the lexicon consists of
fully-inflected word forms and that morphology induction is the result of discovering
implicative relations between them. Unknown forms are inferred through redundant
analogy-based patterns between known forms, along the lines of an analogical propor-
tion such as:

rendere ‘make’ :: reso ‘made’ = appendere ‘hang’ :: appeso ‘hung’.

Support to this view comes from developmental psychology, where words are
understood as the foundational elements of language acquisition, from which early
grammar rules emerge epiphenomenally (Tomasello 2000; Goldberg 2003). After all,
children are exposed to fully inflected forms in acquisition, and have no privileged
access to underlying base forms. Besides, they appear to be extremely sensitive to sub-
regularities holding between inflectionally-related forms (Bittner, Dressler, and Kilani-
Schoch 2003; Colombo et al. 2004; Dąbrowska 2004; Orsolini and Marslen-Wilson 1997;
Orsolini, Fanari, and Bowles 1998). Further support is lent by neurobiologically inspired
computer models of language, blurring the traditional dichotomy between processing
and storage (Elman 2009; Marzi et al. 2016).

In the present paper, we will mainly be concerned with issues of cognitive plausi-
bility and inter-linguistic coverage for computational models of word generation. Our
main emphasis here is not on the most effective machine learning strategy for a specific
language classification task on a specific language, but on the general algorithmic
requirements of the developmentally realistic task we set ourselves to (namely the ’cell-
filling problem’, see infra). In particular, we will focus on how these requirements are
met by one of the most advanced and sophisticated models of recurrent neural networks
to date, so-called Long Short Term Memory (LSTM) networks (Bengio, Simard, and
Frasconi 1994; Hochreiter and Schmidhuber 1997; Malouf 2017). Hence, comparison of
the system performance with other competing systems will be carried out only to the
extent needed to show that the proposed architecture compares reasonably well with
state of the art algorithms and to focus on its learning bias. As we are not interested
in proving that our LSTM architecture performs better than other systems, but only in
assessing its potential with the sparsest possible set of language-specific assumptions,
issues of task-driven, language-driven and parameter-driven optimization are not ad-
dressed.

2. The cell-filling problem

To understand how word inflection can be conceptualised as a word relation task,
it is useful to think of this task as a cell-filling problem (Ackerman and Malouf 2013;
Ackerman, Blevins, and Malouf 2009). Inflected forms are traditionally arranged in
so-called paradigms. The full paradigm of CREDERE ’believe’ is a labelled set of all
its inflected forms: credere, credendo, creduto, credo etc. In most cases, these forms take
one and only one cell, defined as a specific combination of tense, mood, person and
number features: e.g. crede, PRES IND, 3S. In all languages, words happen to follow
a Zipfian distribution, with very few high-frequency words, and a very long tail of
exceedingly rare words (Blevins, Milin, and Ramscar 2017). As a result, even high-
frequency paradigms happen to be attested partially, and speakers must then be able to
generalise incomplete paradigmatic knowledge. This amounts to a cell-filling problem:
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given a set of attested forms in a paradigm, the speaker has to guess what other forms
can fill in empty cells in the same paradigm.

2.1 Computational modelling

Borrowing Blevins’ (2006) terminology, we can make a distinction between “construc-
tive” and “abstractive” algorithms for word learning. Constructive algorithms assume
that classificatory information is morpheme-based. Word forms are segmented into
morphemes for training, and a classifier must learn to apply morpheme segmentation
to novel forms after training. An abstractive learning algorithm, on the other hand, sees
morphological structure as emerging from full forms, be they annotated with classifica-
tory information (supervised mode) or not (unsupervised mode). From this perspective,
training data consist of unsegmented word forms (strings of either letters or sounds),
possibly coupled with their lexical and morpho-syntactic content. Accordingly, mor-
phological acquisition boils down to learning from lexical representations in training,
to generalise them to unknown forms. In this process, word-internal constituents can
possibly emerge, either as a result of the formal redundancy of raw input data (unsu-
pervised mode), or as a by-product of form-content mappings (supervised mode). Only
abstractive machine learning models of inflection can address the cell-filling problem.
Thus, we will hereafter focus on abstractive models.

A further important qualification to be made in this connection concerns the set of a-
priori assumptions about the target inflection system that some abstractive algorithms
avail themselves of. For example, knowledge that the target language morphology is
concatenative can considerably constrain the hypothesis search space of the algorithm,
which is biased to look for stem-ending patterns only. This bias has important implica-
tions for word acquisition. Although no explicit morpheme segmentation is provided
in training, the way word forms are tentatively split into internal constituents brings to
bear detailed information about boundary relations between constituents (Goldsmith
2001). Other a-priori biases may consist in (i) using fixed-length positional templates
(Keuleers and Daelemans 2007; Plunkett and Juola 1999), or (ii) tying individual sym-
bols (letters or sounds) to specific positions in the input representation (so-called “con-
junctive” coding) (Coltheart et al. 2001; Harm and Seidenberg 1999; McClelland and
Rumelhart 1981; Perry, Ziegler, and Zorzi 2007; Plaut et al. 1996), or (iii) resorting to
some language-specific alignment algorithms (Albright 2002) or head-and-tail splitting
procedures (Pirrelli and Yvon 1999).

We contend that a bootstrapping algorithm for morphology induction should be
valued for its ability to converge on the acquisition of an inflection system with the
sparsest possible set of a-priori assumptions about the underlying structure of the
system, rather than for its learning bias. The ability to recognise position-independent
patterns in symbolic time series, like the word book in handbook, or the verb root mach in
German gemacht (’made’ past participle), lies at the heart of human learning of inflec-
tion. A more human-like algorithm for morphological bootstrapping should have the
capacity to adapt itself to the morphological structure of the target language. This is all
the more important, if we consider that the way morpho-syntactic features are contextu-
ally realised through processes of word inflection arguably represents the widest dimen-
sion of crosslinguistic grammatical variation (somewhat belittling universal invariances
along other dimensions (Evans and Levinson 2009)). Although many comprehensive
catalogues of the morphological markers and patterns in a given language or languages
are available (Bickel and Nichols 2005; McWorther 2001; Shosted 2006), there exists no
close inventory of parametric cross-linguistic variation for inflection.
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In the machine learning literature, a more principled approach to morphology
induction has been taken by so-called “features and classes” approaches (McNamee,
Nicholas, and Mayfield 2009; Pauw and Wagacha 2007), where a word form is repre-
sented as a set of redundantly specified n-grams, i.e. possibly overlapping substrings of
n characters making up the input string: for example, ‘wa’, ‘al’, and ‘lk’ for the string
walk. N-grams have no internal structure and may be order-independent. The algorithm
may start with the hypothesis that each word form is in a class of its own, and uses a
stochastic classifier to calculate the conditional probability of having a certain class (a
word form) given the set of distributed n-grams associated with the class. N-grams that
occur in many words will be poorly discriminative, whereas features that happen to
be repeatedly associated with a few word forms only will be given a morphologically
meaningful interpretation. Features and classes approaches are in a position to address
the bootstrapping issue of converging on the appropriate morphological classification
of input data with no a-priori learning biases. However, due to their n-gram bases
representations of input forms, it is not clear how they can be used for generating a
fully spelled out form from its lexical and morpho-syntactic features, as required by the
cell-filling problem.

A few more recent connectionist models have addressed the problem of learning
inflectional paradigms. Goldsmith and O’Brien’s (2006) network takes as input a lexeme
identifier and a paradigm cell from the Spanish conjugation, to output the correct
realisation for the corresponding form. However, the output is not a full form, but an
identifier for one of a predefined set of possible realisations: e.g. -amos for CANTAR ’sing’,
PRES IND, 1P. A more psycholinguistically inspired connectionist network is described
by Thymï¿œ et al. (1994), which nonetheless applies to a few noun lemmas only, and
is mostly intended to simulate human errors. Finally, Temporal Self-Organising Maps
(TSOMs) have recently been proposed as models of dynamic memories for symbolic
time-series. In TSOMs, words are represented as chains of specialised processing nodes,
that selectively fire when specific symbols are input in specific temporal contexts. Node
specialisation is the outcome of the interplay of two training principles, based on
entrenchment and competition. Marzi and colleagues (2018) discuss some important
properties of TSOMs trained on 6 inflection systems of different complexity (including
one typologically different one). However plausible as models of abstractive paradigm-
based learning of inflection morphology, TSOMs are, however, not readily amenable to
being used for the cell-filling problem.

Here, we consider another different connectionist architecture, based on Long Short
Term Memories (LSTMs), recently proposed by Malouf (2016, 2017) to address the cell-
filling problem.

3. The Experiment

Cell-filling can be simulated by training a learning model on a number of partial
paradigms, to then complete them by generating missing forms. Training consists of
<lemma_paradigm cell, inflected form> pairs. A lemma is not a form (e.g. credere ’to
believe’), but a symbolic proxy of its lexical content (CREDERE). Word inflection consists
of producing a fully inflected form given a known lemma and an empty paradigm cell.
It is important to appreciate that for a model to be able to produce an inflected form on
the basis of a cluster of lexical and morpho-syntactic features, it has to learn the symbol
sequence making up the stem of the verb in question in the first place and to combine it
with the paradigmatically appropriate inflectional ending.
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Figure 1
The network architecture. The input vector dimension is shown in brackets. Trainable dense
projection matrices are shown as 1 : n, and concatenation as 1 : 1.

3.1 Methods and materials

Following Malouf (2017), the LSTM network in Figure 1 is designed to take as input a
lemma (e.g. CREDERE), a set of morpho-syntactic features (e.g. PRES_IND, 3, S) and a
sequence of symbols (<crede>)1 one symbol st at a time, to output a probability distri-
bution over the upcoming symbol st+1 in the sequence: p(st+1|st,CREDERE, PRES_IND,
3, S). To produce the form <crede>, we take the start symbol ‘<’ as s1, use s1 to predict
s2, then use the predicted symbol to predict s3 and so on, until ‘>’ is predicted. Input
symbols are encoded as mutually orthogonal one-hot vectors with as many dimensions
as the overall number of different symbols used to encode all forms in the dataset.

The architecture was implemented in the Python language using two software
libraries: Keras2 and TensorFlow3. Keras is a high-level Python library that allows to
define artificial neural networks using simple (even functional) APIs. Once defined the
neural architecture, Keras relies on other libraries for all the numerical computations. In
our case, we used the library TensorFlow (and its Python API) configured to run on the
GPU. 4

Unlike in Malouf’s architecture, where morpho-syntactic features are holistically
encoded in the input layer as one-hot vectors, each representing an orthogonal bundle of
tense, mood, person and number features, here the morpho-syntactic features of tense,
person and number are given independent one-hot vectors, whose dimensions equal the

1 ‘<’ and ‘>’ are respectively the start-of-word and the end-of-word symbols
2 https://keras.io/

3 https://www.tensorflow.org/

4 When running on a nVidia GeForce GTX970 with 1664 CUDA cores, a single training iteration (one folder
in the leave-one-out cross-validation, with mini-batches of size 32) lasts between 15 and 30 seconds,
depending on the network size and on the training language (more precisely, on the average length of the
input sequences of symbols).
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Table 1
Language datasets. Form length is measured by the number of orthographic symbols. In the
Italian sample, the orthographic accent is encoded as a separate character (e.g. ï¿œ = e’).
Differences between form types and cardinality of the training set are due to syncretism
(particularly extensive in English).

min/max regular/irregular form types/

language form length paradigms training size

English 2/11 20/30 208/750

German 3/11 16/34 504/750

Italian 2/12 23/27 748/750

Spanish 2/15 23/27 715/750

number of different values each feature can take. An extra dimension is added when
a feature can be left uninstatiated in particular forms, as is the case with person and
number features in the infinitive. No information is given about conjugation class for
those languages (like Italian and Spanish) with more than one such class. This choice
is motivated by the need to keep our network architecture as language-independent as
possible, thus minimising recourse to those representational “tricks” that presuppose
some knowledge of the language being learned. Language morphologies may differ
considerably in the way morpho-syntactic feature bundles (e.g. <PRES_IND, 3, S>) are
mapped onto surface markers. Some (more fusional) languages appear to realise a
whole bundle of features with a single marker, whereas more agglutinative languages
assign different markers to different features in the same bundle. Accordingly, a more
distributed representation of morpho-syntactic features on the input layer is the most
uncommitted, language-neutral option. Preliminary tests of the network performance
using either style of feature encoding (i.e. “bundled” vs. “distributed”) confirmed this
assumption, showing that Malouf’s encoding style is linguistically more biased than a
distributed encoding of morpho-syntactic features is.

All input vectors are encoded by trainable dense matrices whose outputs are con-
catenated into the projection layer z(t), which is input, in turn, to a layer of LSTM blocks
(Figure 1). The LSTM layer takes as input both the information of z(t), and its own
output at t–1. Recurrent LSTM blocks are known to be able to capture long-distance
relations in time series of symbols (Bengio, Simard, and Frasconi 1994; Hochreiter
and Schmidhuber 1997; Jozefowicz, Zaremba, and Sutskever 2015), avoiding classical
problems with training gradients of Simple Recurrent Networks (Jordan 1986; Elman
1990).

We tested our model on four comparable sets of English, German, Italian and
Spanish inflected verb forms (Table 1), where paradigms are selected by sampling the
highest-frequency fifty paradigms in large monolingual reference corpora (the Celex
database for German and English (Baayen, Piepenbrock, and Gulikers 1995), the Italian
Paisï¿œ corpus (Lyding et al. 2014), the European Spanish Subcorpus of the Spanish Ten-
Ten Corpus (www.sketchengine.co.uk)). For all languages, a fixed set of cells was chosen
from each paradigm: all present indicative forms (1SIE, 2SIE, 3SIE, 1PIE, 2PIE, 3PIE), all
past tense forms (1SIA, 2SIA, 3SIA, 1PIA, 2PIA, 3PIA), infinitive (i), past participle (pA),
German and English present participle/Italian and Spanish gerund (pE). Each training
form was administered once per epoch, and training was stopped when the training
accuracy did not improve by more than a fixed threshold (results in this paper have
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510 (68%)
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300 (40%)
450 (60%)
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345 (46%) 405 (54%)

ES

Regulars
Irregulars

Figure 2
Composition of the four datasets (IT: Italian, DE: German, EN: English, ES: Spanish) in terms of
percentage of forms belonging to regular and irregular paradigms. As expected, for all
languages, the majority of top-frequency paradigms are irregular.

been obtained using the value 0.005) for a number consecutive “patience” epochs (set to
five in these experiments). Although a uniform distribution is admittedly not realistic,
it increases the entropy of the cell-filling problem, to define some sort of upper bound
on the complexity of the task.

The four sets exhibit extensive stem allomorphy and a rich set of affixations, in-
cluding circumfixation (German ge-mach-t ’made’, past participle). Most importantly,
the distribution of stem allomorphs is accountable in terms of equivalence classes of
cells, forming morphologically heterogenous, phonologically poorly predictable, but
fairly stable sub-paradigms (Pirrelli 2000). Selection of the contextually appropriate
stem allomorph for a given cell thus requires knowledge of the form of the allomorph
and of its distribution within the paradigm. For example, that 1S, 3S and 3P cells of
the Italian PASSATO REMOTO always select the same stem (e.g. pres-i, pres-e and pres-ero
of PRENDERE ’take’) is a general property of the Italian conjugation system. Similarly,
if an irregular English paradigm presents two stem allomorphs (say stem_1 = find and
stem_2 = found), stem_2 is selected in all past tense and past participle cells, whereas
stem_1 is selected elsewhere. Finally, of the four verb systems, German, Italian and
Spanish present a wide variety of inflectional endings, with the German set of endings
being smaller and more systematic than the other two. Among all test languages, the
English verb system is of a more isolating type, with a considerably more restricted set
of inflectional endings, and a plethora of bare stem forms, i.e. inflected forms with zero
affixation.

4. Results

To provide a useful benchmark for the performance of the LSTM network on the cell-
filling task, we used the baseline system for Task 1 of the CoNLL-SIGMORPHON-2017
Universal Morphological Reinflection shared task.5 The model changes the base form
of a verb lemma into its inflected forms through rewrite rules of increasing specificity,

5 https://github.com/sigmorphon/conll2017 (written by Mans Hulden).
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Figure 3
Per-word accuracy of the CoNLL baseline model tested on Italian (IT), German (DE), English
(EN) and Spanish (ES).

automatically discovered from annotated training data. Base forms are infinitive forms
for German, Italian and Spanish, and bare stems for English. To illustrate, two Italian
forms such as badare ‘to look after’ and bado ‘I look after’ stand in a BASE :: PRES_IND_3S

relation. The most general rule changing the former into the latter is -are -> -o, but more
specific rewrite rules can be extracted from the same pair: -dare -> -do, -adare -> -ado,
-badare -> -bado. The algorithm then generates the PRES_IND_3S of - say - diradare ’thin
out’, by using the most specific rewrite rule, i.e. the rewrite rule with the longest left-
hand side matching diradare (namely -adare > -ado). If there is no matching rule, the base
is used as a default output. It should be appreciated that the task is considerably simpler
than the cell-filling problem. The algorithm can in fact infer, from the input, information
about the verb base form (and, for Italian and Spanish, also about the verb conjugation
class), which is to be learned from scratch in the context of the cell-filling problem.

In assessing the accuracy of the two learners, we used a leave-one-out cross-
validation protocol: each form was left out of the training set, and predicted on the basis
of all remaining forms. For LSTMs, this required running 750 networks, each trained on
749 exemplars and tested on the left-out exemplar.

The CoNLL baseline algorithm proves to be fairly effective for all test languages, but
unevenly so (Figure 3). Somewhat unexpectedly, the model performs better on the more
paradigmatically complex systems (namely Italian and Spanish, see final discussion),
where regulars are inferred with remarkable accuracy (89.86% for Italian, and 91.31% for
Spanish). Irregulars are predicted consistently worse (62.47% and 60.49% respectively).
Accuracy on regulars is 77.92% for German and 73.67% for English, with a drop for
irregulars (accuracy 51.37% and 54.89% respectively). By comparison, LSTM networks
of different block size perform, on average, better than the baseline model (Figure 4).
Once more, comparative accuracy varies with languages. Note that the most accurately
predicted language by the baseline model (Italian) is the least accurately predicted by
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Figure 4
Per-word accuracy for Italian (IT), German (DE), English (EN) and Spanish (ES). Overall test
scores are given for all LSTM network types (ordered by increasing number of LSTM blocks) and
the CoNLL baseline.

LSTM networks. Nevertheless, even in this LSTM worst case, LSTM accuracy is at about
the same level of the baseline accuracy. This is also true for Spanish. As for German and
English, LSTM networks fare consistently better than the baseline model does (Figure
4). LSTMs average accuracy is: 73.30% on Italian, 76.77% on Spanish, 82.50% on German,
and 90.20% on English forms. The CoNLL baseline accuracy is: 75.06% on Italian, 74.67%
on Spanish, 59.87% on German, and 62.40% on English forms.

To check stability of our results, which could be heavily affected by LSTM initiali-
sation point (Reimers and Gurevych 2017), we ran four different instances of the same
experiment for each language, using the best performing block configuration given the
language (namely 1024 for Italian, and 512 for all other languages). Accuracy scores
averaged over the four istances are as follows: 74.30% on Italian (sd 0.4%), 78.23%
on Spanish (sd 1%), 82.6% on German (sd 0.9%), and 90.93% on English (sd 1.3%),
confirming the stability of our results.

Finally, even in case of errors at the word level, LSTMs proves to approximate the
missed target more closely than the baseline does, as shown by the average edit distance
between targets and outputs for all systems (Figure 5).

5. Discussion

The Cell-filling problem is a non trivial language learning task, especially in a situation
where the speaker is exposed to a sample of the most frequent verb paradigms only,
which include the most irregular ones in the conjugation system of all our test languages
(Table 1). In a few cases, the problem has admittedly no solution. For example, in our
test languages it is simply impossible to predict the first person singular of the present
indicative of the auxiliary BE, on the basis of information from all remaining cells of the
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Figure 5
Mean edit distance between target form and output form for Italian (IT), German (DE), English
(EN) and Spanish (ES). Distances are given for all LSTM network types (ordered by increasing
number of LSTM blocks) and the CoNLL baseline.

paradigm. Another case in point is the German past participle gefunden ’found’, which
is the only form of FINDEN containing the stem alternant fund-, and has no other form
with the same alternation pattern in our dataset. In fact, here we were not interested
in replicating realistic and ecologically plausible learning conditions in child language
maturation. Rather, we wanted to focus on the comparative difficulty of the task across
a few languages, with the aim to assessing the ways in which LSTM networks address
the logical problem of inferring novel inflected forms on the basis of the cumulative
knowledge of their paradigm companions. Our experimental results clearly confirm
the difficulty of the task. A powerful deep learning algorithm like an LSTM network
compares well with the CoNLL baseline model, but it does not invariably outperform
it. In this section, we discuss strengths and weaknesses of the two learning models.

The CoNLL baseline model is strongly reminiscent of Albright and Hayes’ (2003)
Minimal Generalisation Learner (MGL). MGL was, in fact, originally designed to infer
Italian infinitives from first singular present indicative forms (Albright 2002). In the
CoNLL model, inference goes in the opposite direction: from base forms to all other
paradigm cells. Incidentally, this inferential relation is much more informative than the
one adopted by Albright,6 as the Italian infinitive contains information about the verb’s
thematic vowel, which is neutralised in the first singular present indicative forms, where
the thematic vowel cancels out.

The CoNLL model has a clear analogy-based bias. Verb stems ending in the same
way (compare - say - Italian tend-ere ’tend’, rend-ere ’turn’, and prend-ere ’take’) undergo

6 In (Albright 2002), choice of the first person singular in the Italian present indicative was motivated
precisely by the goal to investigate how easily the appropriate conjugation class of an Italian verb form
can be predicted in those contexts where information of the thematic vowel is missing.
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Figure 6
Per-cell accuracy of LSTMs and CoNLL baseline on regular paradigms in the four test languages.

the same allomorphic readjustment (respectively, teso ’tended’, reso ’turned’ and preso
’taken’ in the past participle). In Italian, unpredictable stem allomorphy affects, in the
vast majority of cases, the final part of the verb stem, and it is historically motivated
by the operation of local phonological rules (Burzio 2004; Pirrelli 2000). Overall, the
number of stems undergoing the same irregular stem formation processes is com-
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Figure 7
Per-cell accuracy of LSTMs and CoNLL baseline on irregular paradigms in the four test
languages.

paratively large. Such a densely populated analogical space makes it highly likely
that an unknown target form (e.g. preso) undergoes the same allomorphic process of
the paradigmatically corresponding form of another paradigm (e.g. reso) whose base
stem (rend-) ends in the same way as the target base stem (tend-). This makes the
CoNLL baseline a powerful generalisation algorithm. Unsurprisingly, the same local
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generalisation strategy is successful for Spanish too. However, in both languages, it
fails to deal with stem allomorphy involving vowel apophony (as in esco/usciamo ’I go
out/we go out’), or diphthongisation (as in Italian vengo/vieni ’I come/you (2S) come’,
and Spanish cuento/contar ’I count/to count’, vuelvo/volver ’I come back/to come back’),
where phonological changes are not limited to the characters immediately preceding
the stem boundary.

On the other hand, it turns out that the CoNLL baseline is a much weaker learner
of German and English, where stem allomorphy is not confined to the stem boundary,
and is more consistently distributed throughout the paradigm. This is shown in Figures
6 (for regular paradigms) and 7 (for irregular paradigms), plotting the per cell accuracy
of LSTMs and the baseline for all test languages. In all past tense and past participle
cells of both German and English, where stem allomorphy applies systematically, the
baseline algorithm is considerably less accurate than LSTMs are. To illustrate, let us
focus on how the baseline algorithm infers the past participle of SAY. Our training set
contains one maximally overlapping stem: PLAY. However, this is a “false” analogical
friend to SAY, yielding the wrong past participle form *sayed. This shows a general over-
regularisation bias of the baseline, extensively witnessed by most (irregular) ablauting
forms in German, which are over-regularised by the CoNLL baseline (e.g. *nemmst for
nimmst ’you take’, gebt for gibt ’it gives’).

For sure, over-regularised outcomes are plausible and frequent in child production
of inflection (Clahsen, Hadler, and Weyerts 2004). A larger set of training exemplars
than the one used here, including, e.g., forms of PAY (past participle paid), is expected to
provide the evidence needed to inflect SAY correctly. Be that as it may, for our present
purposes, a detailed comparison of the results of LSTMs with the CoNLL baseline is
useful to understand more of the underlying morphological structure of our training
data, as well as LSTMs’ learning bias.

5.1 Regulars vs. irregulars

In dealing with German and English irregularly inflected forms, the purely syntagmatic
approach of the CoNLL baseline, deriving all inflected forms from an underlying base,
is too surface-oriented and misses some significant non local constraints. Simply put,
the orthotactic/phonotactic structure of Germanic stems is less criterial for stem allo-
morphy than the orthotactic/phonotactic structure of Romance stems. A much more
robust generalisation strategy for the two Germanic languages is to exploit the larger
formal paradigmatic syncretism of their verb system.

Although LSTMs have no information about the morphological structure of input
forms, they are considerably more robust than our baseline in this respect. Mem-
ory resources allowing, LSTMs appear to keep track of two types of syntagmatic
constraints: short range phonological/orthotactic patterns (preventing the network
to output phonotactically implausible strings such as *seemng for target seeming), as
well as longer range morphotactic constraints, covering the sequential structure of
prefixes, stems and suffixes. Another, related issue of some theoretical interest, is to
assess whether LSTMs are able to enforce global, paradigmatic constraints, whereby
all paradigmatically-related forms contribute to fill in gaps in the same paradigm. In
the end, knowledge that a paradigm contains a few stem allomorphs is good reason
for a speaker to produce a stem allomorph in other (empty) cells. The more systematic
the distribution of stem alternants is across the paradigm, the easier for the speaker
to fill in empty cells. In this respect, German and English conjugations prove to be
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paradigmatically well-behaved. Several pieces of evidence show that LSTMs are able
to discover at least a few syntagmatic and paradigmatic redundancies of this kind.

First, output paradigm cells play a distinctive role in driving the generalisation
bias of LSTMs. In the baseline model, a target inflected form is produced by finding
the base analogue in the training data that best fits the target base. Whenever a target
inflected form is produced on the basis of the best analogue to its base, the same form
is output in all other cells where the best analogue happens to have identical forms.
For example, if BASE::SAY best matches BASE::PLAY, SAY will be inflected as *sayed in
all part participle and past tense cells, where PLAY is inflected as played. This is because
MGL generalisation is based on matching input conditions only. This is not the case for
LSTMs. For example, the form *maken is wrongly produced for PAST_PART::make, but
made is correctly output for all past tense forms. This provides a strong indication that
generalisation is also based on output cells, not on input conditions only.

A second related issue is whether LSTMs can develop global constraints on the
distribution of stem allomorphs across the paradigm. We find some evidence that this
is the case in analysing patterns of errors. Occasionally, past tense forms are wrongly
output in past participle cells. So we find wrote for written, took for taken and began for
begun. However, this pattern of errors is rather unsystematic. We suspect that it may
simply be due to the repeated association of past tense forms with the feature PAST in
the input vector.

What role does morphological structure play in the LSTM generalisation bias? Due
to the predictive nature of the production task and the LSTM re-entrant layer of tempo-
ral connectivity, the network develops a left-to-right sensitivity to upcoming symbols,
with per-symbol accuracy being a function of the network confidence about the next
output symbol.7 As we saw, this sensitivity to sequential patterns is responsible for the
network’s control on orthotactically/phonotactically plausible sequences. To assess the
correlation between per-symbol accuracy and “perception” of morphological structure,
we used Generalised Additive Models (GAM) interpolating the “average” accuracy of
the learning algorithm in producing an upcoming symbol as a function of the symbol
position to the inflectional boundary of each form. Results are not unequivocal, as
illustrated in Figure 8.

The regression plots of Figure 8 show a clear structural effect of the distance to the
stem-ending boundary of LSTM output symbols in German, Italian and Spanish, where
accuracy drops to its minimum value around the morpheme boundary (corresponding
to the 0 value on the x axis of the regression plots). In Italian, the most apparent differ-
ence between LSTMs (dotted lines) and the baseline (red solid line) is observed across
the inflectional endings, where the per-symbol accuracy of the baseline is significantly
lower than the accuracy of 256, 512 and 1028 block LSTMs. Nonetheless, per-word
accuracy scores on Italian are higher in the CoNNL baseline than in LSTMs. In Spanish,
the 256, 512, 1028 block LSTMs perform consistently better than the baseline. In German,
the overall advantage of LSTMs over the baseline is marked by the characteristically U-
shaped curve of per-symbol accuracy at the stem-ending boundary. Once more, this
position marks a point of structural discontinuity in inflected verb forms. Intuitively,
production of an inflected form by an LSTM network is fairly easy at the beginning of

7 For each position in the target verb form, a matching output letter is given a score of 1, and a non
matching output letter a score of 0. An average score of 1 in the model means that the letter in that
position is always correctly predicted, and an average score of 0 means that it is always missed.
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Figure 8
Regression plots of the interaction between distance to morpheme boundary (between stem and
inflectional ending) and learning model in a GAM fitting per-symbol prediction accuracy in the
four test languages.

the stem, but it soon gets more difficult when approaching the morpheme boundary,
particularly with irregulars.

On the other hand, the English plot provides little or no evidence of structure
sensitivity. The apparent U-shaped profile of the baseline does not denote a greater
accuracy on long inflection endings relative to LSTM accuracy. It is merely a nonlinear
interpolation effect making up for the poor performance of the baseline algorithm on
English (irregular) stems compared with the corresponding endings. In fact, all LSTM
models are significantly more accurate than the baseline on a long inflectional ending
such as -ing (Figure 9, left).

The evidence has non trivial implications from a typological point of view. In
a comprehensive comparison of nearly two dozen languages (in the Indo-European,
Ugro-Finnic and Semitic families plus Turkish), Bittner and colleagues (2003) arrive
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Figure 9
Regression plots of the interaction between distance to morpheme boundary (between stem and
inflectional ending) and learning model in a GAM fitting per-symbol prediction accuracy in
English ing-forms (left) and s-forms (right).

at the conclusion that acquisition of inflection is crucially conditioned by typological
factors such as richness, uniformity and transparency of inflectional paradigms. They
provide the following schema, where some European languages are arranged along
a typological continuum ranging from the inflecting-fusional type (left) to the more
isolating type (right):

Lithuanian→Greek→Russian→Croatian→Italian→
Spanish→German→Dutch→French→English.

The implication of this schema for our concerns is that an English inflected form
provides, as such, little evidence of structural discontinuity. It is then to be expected
that we find sparser evidence of processing uncertainty for symbol prediction at the
morpheme boundary in a more isolating language like English. This is confirmed by
evidence from child language acquisition of English inflection (Haegeman 1995; Phillips
1996), showing that English children tend to omit s-marking in the realisation of present
indicative third singular forms, due to the overwhelming pressure of base forms in the
same subparadigm. LSTMs, unlike CoNLL baseline, show a similar behaviour (Figure
9, right).8 Note, finally, that the typological hierarchy above is somewhat mirrored by
the accuracy results we obtained with LSTMs (Figure 4), where Italian is the most
difficult language to be generalised over in production, and English is the easiest one.
The CoNLL baseline does not seem to follow the same hierarchy. That more irregular
paradigms are more difficult to learn appears to match the intuition that the morpholo-
gies of some languages are more complex than those of other languages.

8 This typological effect is somewhat amplified by the criteria we adopted for defining the position of the
stem-ending boundary. For example, following Aronoff (1994), we consider an irregular past participle
like English made as a full allomorphic stem, with no ensuing affixation.
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6. Concluding remarks

The cell-filling problem addresses the ecological, developmentally motivated task of
inferring novel inflected forms based on evidence of familiar forms. Other (simpler)
models have been proposed in the literature to account for form-meaning mapping
in Morphology (Baayen et al. 2011; Plaut and Gonnerman 2000, among others). Nev-
ertheless, we do not know of any other artificial neural networks that can simulate
word inflection as a cell-filling task. Unlike more traditional connectionist architectures
(Rumelhart and McClelland 1987), recurrent LSTMs do not presuppose the existence
of underlying base forms, but they learn possibly alternating stems upon exposure to
linguistically annotated full forms. Admittedly, the use of orthogonal one-hot vectors
for lemmas, unigram temporal series for inflected forms, and abstract morpho-syntactic
features as a proxy of context-sensitive functional agreement effects, are crude repre-
sentational short-hands. Nonetheless, in tackling the task, LSTMs prove to be able to
orchestrate different sources of word knowledge, well beyond pure surface word rela-
tions: namely morphological structure (stem-affix boundaries), paradigm organisation
and degrees of (ir-)regularity in stem formation. Acquisition of different inflectional
systems may require a different balance of all these pieces of knowledge.

Unlike more ad hoc algorithms, LSTMs appear to be flexible and powerful enough to
be able to adapt their learning strategy to the specific properties of inflectional systems
of different complexity. This strikes us as an important bonus of LSTMs. In addressing
a task like the cell-filling problem, which does not seem to require information about
very long sequences of input symbols, LSTMs prove to be able to discover other
complex constraints than just sequential or syntagmatic ones, using memory of input
forms in complementary distribution as global generalisation patterns. Having said
that, we should also emphasise that that the cell-filling problem turned out to be a rather
recalcitrant and challenging task even for a powerful machine learning technology like
LSTMs. We gathered sparse evidence that LSTMs can develop a stem variable capturing
the sweepingly systematic patterns of stem distribution across paradigm cells. Like
more traditional associative connectionist networks, it looks like LSTMs can learn a
universally quantified one-to-one mapping relation only if this relation is illustrated
with respect to each possible input/output pairs (Marcus 2001). Hence, even when an
LSTM network is exposed to a number of paradigms instantiating the same pattern
of stem distribution, the pattern is not readily extended to the unknown form of a
partially filled in paradigm. We expect more experiments on typologically more diverse
languages to be needed before the issue of the cognitive plausibility of LSTMs as models
of the human word processor can be assessed on a firmer empirical basis.
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