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Abstract
The increasing complexity of the artificial implementations of biological systems, such as the
so-called electronic noses (e-noses) and tongues (e-tongues), poses issues in sensory feature
extraction and fusion, drift compensation and pattern recognition, especially when high
reliability is required. In particular, in order to achieve effective results, the pattern recognition
system must be carefully designed. In order to investigate a novel biomimetic approach for the
pattern recognition module of such systems, the classification capabilities of an artificial
model inspired by the mammalian cortex, a cortical-based artificial neural network (CANN),
are compared with several artificial neural networks present in the e-nose and e-tongue
literature, a multilayer perceptron (MLP), a Kohonen self-organizing map (KSOM) and a
fuzzy Kohonen self-organizing map (FKSOM). Each network was tested with large datasets
coming from a conducting polymer-sensor-based e-nose and a composite array-based
e-tongue. The comparison of results showed that the CANN model is able to strongly enhance
the performances of both systems.

1. Introduction

The new breakthroughs made in the past few decades in
material science in order to develop intelligent materials allow
one to mimic the nature of biological systems in terms of
sensing and actuation capabilities [1]. In the early 1980s,
Persaud and Dodd [2] first established that an array of
non-selective sensors could be used to discriminate between
simple odors through pattern recognition schemes. These
advances allowed devices such as electronic noses (e-noses)
and tongues (e-tongues) to become widespread [3]. Artificial
noses and tongues have numerous applications [4, 5], such
as the monitoring of emissions of outdoor [6] or indoor [7]
volatile organic compounds and the detection of explosives [8],
and several sensing systems have been commercialized. The
principal application of e-noses is in the food and agricultural
fields [9, 11], i.e. inspection of food, grading quality of
food, fish inspection, fermentation control, beverage container
inspection, automated flavor control, and so on, although
recently several other areas have been suggested [12]. An
electronic nose could also have applicability as a diagnostic
tool [13]. An electronic nose could examine odors from the

body (i.e. breath, wounds, body fluids, and so on), identifying
possible problems. Odors in the breath can be indicative
of diabetes, breast cancer, lung cancer and heart transplant
rejection [14–20].

Systems capable of discriminating liquid-phase tastes
have been slower to follow, although recently several artificial
tongues have been proposed [21]. Taste sensors have mainly
been utilized to discriminate between various brands of food
and drink, and most of the work in this area has been
pioneered by a Japanese group [22] who have assessed a whole
range of liquids and semi-liquids such as water, sake, beer
and tomatoes. Their sensors are composed of a variety of
lipids in a polymer matrix which respond by changing their
potential in the presence of different liquids. More recently,
other research groups have also developed electronic tongues
[23–25]. Vlasov’s system is based on an array of chalcogenide
glass electrodes which have a broadband sensitivity to cations
and anions whilst Lundstrom’s group have reported a system
using metal electrodes based on pulsed voltammetry.

At present, these instruments often fail to give the
expected results and the research is under development.
This happens for a series of concomitant causes, ranging
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from the measurements, to the limits relevant to instability
and non-reproducibility of most existing sensors, up to the
inappropriate use of the pattern recognition scheme. Pattern
recognition techniques are used to analyze data with the aim of
reproducing typical olfactory and gustative system functions,
such as the perception of an odor/taste and its classification
through the comparison with similar stimuli perceived in the
past. Many techniques are used for this purpose, but recently,
the e-nose and e-tongue processing architectures are often
performed by models inspired by biology, such as genetic
algorithms and artificial neural networks (ANN) [26–30].
Such architectures require high-efficiency interconnection and
cooperation of several heterogeneous modules, i.e. control,
data acquisition, data filtering, feature selection and pattern
analysis [31].

In this paper, the raw signals obtained from an
e-nose and an e-tongue were pre-processed in order to
extract relevant features, such as the energy, the absolute
maximum value, angular coefficients and steady-state values.
The feature vectors constitute the data set for the pattern
recognition processes. The pattern recognition was performed
by a cortical-based artificial neural network (CANN) and
the results were compared with the performances of a
multilayer perceptron (MLP), a Kohonen self-organizing map
(KSOM) and a fuzzy Kohonen self-organizing map (FKSOM)
[37–40]. Each network was tested with the same data sets
coming from the e-nose and e-tongue. Data from the e-nose
were acquired during the analysis of 45 different olive oil
samples and data from the e-tongue were acquired during
the analysis of five compounds able to elicit different kinds
of gustative perceptions (glucose, sodium dehydrocholate,
sodium chloride, citric acid and glutamic acid) corresponding
to the five classic tastes. In the CANN an artificial neuron
model with high computational efficiency and biological
accuracy was adopted. Such a model, recently proposed
by Izhikevich [42, 43], takes 13 floating point operations
(FLOPs) to simulate 1 ms of neuron activity. The theory of
neuronal group selection (TNGS) [44] proposed by Edelman
was adopted as the learning strategy of the CANN. The TNGS
considers the selection as the basis for the learning process. To
take into account this theory the time variable in the learning
task was used, so that neural groups may arise from a selection
process. The network design was inspired by the anatomical
structure found in a layer of the mammalian cortex.

2. Artificial implementation of chemical senses

An artificial nose or tongue can be divided into three main
units, each of which plays an essential role in the recognition
process: an array of broadband sensors; the transduction,
hardware and processing systems; the pattern recognition and
classification tools.

2.1. The e-nose

2.1.1. Sensors. In this work, conducting chemo-sensitive
layers, which change their electrical conductivity in the
presence of volatiles, obtained by the deposition of

Figure 1. Sensors’ stability. Legend: different sensor codes.

suspensions of chemically doped alkoxy-substituted
polythiophenes, namely poly-(3,3’-dipentoxy-2,2’-
bithiophene), were used. Alkoxy-substituted polythiophenes
were selected as conducting polymers due to the low potential
for oxidation and to the great stability of the conducting state.
A controlled doping with salts enables them to be conductive.
This process complies with the development of a wide
variety of sensors, whose response depends on the degree of
affinity between volatile and the doped polymer. Preparation
and characterization of chemo-sensitive layers based on
alkoxy-substituted polythiophenes exposed to organic vapors
have previously been reported [34]. Since electric resistance
is the parameter chosen to evaluate the sensors’ response,
it was also used to monitor the sensor stability over time.
As shown in figure 1, sensors are generally stable after a
stabilization phase of about 10 days (variation percentage of
resistance value less than 5%). A typical response of a sensor
to a series of different concentrations of benzene (increasing
concentrations from 1000 ppm to 30 000 ppm) is shown in
figure 2. An evaluation of sensors’ selectivity was obtained
by measuring the resistance variations during the exposure
to saturated organic vapors (figure 3). The measurement
protocol consisted of three phases for each experiment:
baseline acquisition, i.e. sensors flushed with nitrogen,
exposure, i.e. sensors exposed to the sample, and finally
desorption and cleaning, i.e. volatiles flushed with nitrogen to
restore baseline conditions. In figure 3, the abscissa shows
the steady-state resistance variation between exposure and
baseline during the exposure to volatiles; they are listed in the
ordinate according to the magnitude of response. The sensors
were exposed to volatiles in a random order.

2.1.2. The experimental set-up. In order to expose volatiles
to the chemo-sensitive layers, a sampling system devoted to
collecting and conveying volatile samples generated by the
headspace of organic compounds was realized. The headspace
is generated within 125 ml glass vials containing 10 ml
solutions (2.5 µl ml−1) of liquid samples. The instrument
(figure 4) conveys a volatile sample, by means of a gas carrier
such as nitrogen or pure air, into an exposure chamber where
the sensors are lodged. The aim of the chamber is to expose an
array of sensors to volatiles in optimal conditions. The sensors
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Figure 2. A typical response of a sensor to a series of different concentrations of benzene.

Figure 3. Sensors’ selectivity.

Figure 4. E-nose experimental set-up.
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are housed in an eight-sensor stainless steel exposure chamber.
In order to expose an array of sensors to a chemical mixture in
optimal conditions, the chamber must allow all the sensors to
be simultaneously exposed under the same conditions. This
makes it possible to accurately reproduce the shape of the
input concentration signal at each sensor position. Moreover,
it must be designed to obtain the same concentration profile
in repeated measurements and short analyte concentration
rise/fall times, to avoid memory effects and sample dilution. A
homogeneous flow with a low speed gradient, no recirculating
zones or stagnant regions and the same local concentration of
volatiles over each sensor were obtained by choosing a radially
symmetric geometry for the chamber with a dedicated deflector
which allows homogeneous flow conditions with low velocity
gradients. The measurement protocol consists of three phases
for each experiment: baseline acquisition (sensors are flushed
with nitrogen); exposure (sensors are exposed to the sample
headspace); desorption and cleaning (odors are flushed away
by nitrogen to restore baseline conditions).

2.1.3. Hardware architecture. The hardware architecture
consists of an electronic section able to perform fast and
accurate measurements with a conductive polymer sensor
array and to perform a dynamic and automatic control of
the sampling process [31]. The electronic section consists
of a central processing unit, an analog interface and a digital
interface. The analog interface can drive up to 16 sensors
with a resistance of the sensing layer within the range of
500 �–1 M�. Shielded cables connect each sensor to the
analog interface. For each sensor a different current can be
selected and injected thanks to 16 independent digital current
generators. Each current generator is realized with a 12 bit
D/A converter, with a resolution of 1.22 µA bit−1, which
allows 4096 different currents to be chosen. The analog
interface includes the electronics for controlling an array of
mass flow controllers and the temperatures of two external
devices. The acquisition of the sensor transduction signals is
performed by 16 independent 24 bit delta–sigma differential
analog-to-digital converters with a resolution of 298 nV bit−1.
The digital interface includes a 32 bit microcontroller, a 2 MB
non-volatile memory for data and a 1 MB flash memory for
system configuration. Moreover it includes the electronics
for driving the above-mentioned experimental set-up. A
dedicated firmware allows the microcontroller to manage the
electronic and the hydraulic sections. A communication
protocol was designed to allow a personal computer to
control the microcontroller tasks. A framework controls the
synchronization of the data flow between the microcontroller
and the personal computer through a framework I/O interface.
The framework I/O interface has been developed in order to
act as a buffer for the flow of information coming in and out
of the microcontroller.

2.2. The e-tongue

The current research in electronic tongues is based mainly
on electrochemical measurements, with the main focus being
on the development of novel sensors, such as membranes and

(a)

(b)

Figure 5. (a) Typical e-tongue sensor responses; (b) PCL-CNT
sensor responses to bitter compounds at the three different
frequencies.

electrode coatings. Indeed, the use of impedance measurement
represents a novel approach for the realization of an electronic
tongue [32]. This approach is justified by the affinity with
the measurement of resistance variations which is the most
commonly used method for electronic noses.

2.2.1. Sensors. Three different sensing layers were used.
The first sensing layer consisted of polycaprolactone (PCL)
loaded with carbon nanotubes (CNTs). The second sensing
layer was realized from a matrix of polylactic acid (PLA)
loaded with carbon black and it is based on the method
described by Lonergan et al [33]. In the third case, a sensing
layer consisting of poly(alkoxy-bithiophenes), previously
prepared and characterized from the authors in response to
organic vapors [34], was adopted.

The responses of the PCL-CNT sensor to bitter, salty and
sour compounds at the three different frequencies (100 Hz,
150 Hz and 200 Hz) are shown in figures 5 and 6.
The data show that sodium chloride and citric acid are
easily recognized and distinguishable even at the lowest
concentrations. Glutamic acid and sodium dehydrocholate
have acceptable errors too, of the order of a few %, with 200 Hz
giving rise to the lowest errors for these two compounds.
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(a)

(b)

Figure 6. (a) PCL-CNT sensor responses to salty compounds at the
three different frequencies; (b) PCL-CNT sensor responses to sour
compounds at the three different frequencies.

Glucose also had a large fitting error, confirming that the sensor
was unable to adequately distinguish this compound at all
frequencies for the selected concentrations. A linear relation
between impedance and concentration was found with respect
to the umami taste; therefore the sensor can interact with this
compound and distinguish between different concentrations.
Although the logarithmic equation used was quite arbitrary,
there is a good correlation between the fitting error and the
ability of the sensors to distinguish and discriminate substances
and concentrations.

2.2.2. The experimental set-up. An automated measurement
system composed of an impedance meter, a mechanical arm,
a rotating platform and a data acquisition card was designed
and realized (figure 7). The rotating platform was capable
of housing up to six beakers simultaneously, which were
filled with five solutions under test and the rinsing deionized
water. A multiplexer allowed the sequential scanning of the
sensors for the impedance measurement, while the array was
automatically dipped into the baseline and test solutions by

Figure 7. e-tongue experimental set-up.

the coordinated movements of mechanical arm and rotating
platform. The following protocol was adopted: sensors in air
(start of data acquisition); sensors dipped in distilled water;
sensors in air; sensors in solution 1; new cycles (a)–(d) for
the other solutions; sensors in air (stop acquisition); baseline
acquisition (sensors in air); exposure (sensors dipped in the
selected solution); desorption and cleaning (sensors in air;
sensors dipped in deionized water).

2.2.3. Hardware architecture. The electric impedance of
the sensor array was monitored at a frequency of 150 Hz.
At much higher frequencies, the impedance converges to a
single value independent of the sensor composition and only
related to the conductivity of the system, whereas at lower
frequencies the system is slow and subject to ambient noise.
The slope of the impedance spectrum at around 150 Hz is
maximum, and this frequency was thus selected as the most
sensitive, capable of guaranteeing the best discrimination. A
power supply generates a 150 Hz sinusoidal voltage which
is sent to a voltage–current converter. The converter outputs
a constant current that flows in a reference resistance and
in the sensor. The resulting voltage at the two ends of the
reference resistance is collected by a differential amplifier
and is used as the reference voltage. Another differential
amplifier collects the voltage at the two ends of the sensor,
which will result in a signal with different modulus and phase
with respect to the reference voltage. Such an analog signal
is then converted, acquired and processed by a PC equipped
with a data acquisition electronic board (National Instruments
PCI6023E).

2.3. Software architecture

The software architecture has been designed as a hierarchical
structure whose root is a manager module. Several application
processes run inside its core, acting on the dataset available
in the framework I/O buffer. The framework is able to
control all the modules of the elaboration chain, including
analysis protocol management and interfaces. During a signal
pre-processing stage various purposes are served, including
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baseline manipulation, compression, normalization and drift
compensation. Afterwards, data are sent to a dimensionality
reduction module in order to perform a feature extraction.
Selected features are ready for analysis, classification and
clustering tasks. A process devoted to data normalization gets
sensory data from the framework I/O interface. Normalized
data are sent to a process devoted to feature extraction in
order to build the data set. Different pattern recognition
processes described in the following sections perform the data
set classification task. A process devoted to the evaluation of
the pattern recognition by means of cross-validation shows the
classification results.

2.3.1. Features extraction. As regards the signals coming
from the artificial olfactory system, let xk

n(t) be the resistance
versus time t of the nth of N sensors as the response to
the kth of K samples. xk

n(t) signals were windowed and
normalized over the exposure time, i.e. the samplings were
selected within the time interval L = (t1, t2), resulting in
the function xk

n(t) = xk
n(t)

/
(xk

min − 1), where xk
min represents

the minimum value of xk
n(t) in the time interval L. A set

of F features from the normalized signals was extracted; let
f k

n1
, . . . , f k

nF
be the features. The features were: the energy, i.e.

Ek
n = ∑

i∈Lxk
n(t)

2; the absolute maximum value; the angular
coefficient of the line connecting xk

n(t1) and xk
n(tmax); the

angular coefficient of the line connecting xk
n(tmax) and xk

n(t2).
Thus a data set, where each response can be represented as a
point in �K×F , was obtained. The features were normalized
in the 0–1 interval.

As regards the e-tongue, the data were collected in
a database, then suitable queries allowed the extraction of
the steady-state impedances of sensors. The features were
the normalized magnitude and phase of the steady-state
impedances.

2.3.2. Pre-processing. Before applying any classification
technique, the identification and the removal of outliers
(samples significantly different from analogues belonging
to the same population) was needed. As samples of each
category were obtained in our case by replicates of the same
measurement procedure, a multivariate normal distribution
around an ideal category representative might be expected,
deviations from that point being due to experimental errors.
Large deviations may be generated by random errors either
in the sample preparation and measurement or in the data
acquisition and treatment, so that it is not possible to consider
the resulting object a typical sample of that category. Principal
component analysis (PCA) [35] was used to display data and
detect outliers, by using the Q and T 2 diagnostics. Samples
identified as outliers for at least one of these statistics with
p < 0.001 (more than three standard deviations from the
mean value of any category) were removed.

3. Pattern recognition models

In e-noses and e-tongues, the pattern recognition task is often
performed by using ANNs [27]. The concept of ANNs is

to imitate the structure and workings of the human brain by
means of mathematical models. ANNs possess an adaptable
knowledge that is distributed over many neurons which can
communicate (locally) with one another. The structure of the
single neuron model, the network topology and the adaptation
(learning rule) define the ANN architecture. The neurons
(processing units) are single elements and consist principally
of a connection function, an input function, an activation
(transfer) function and an output function. A neuron receives
signals via several input connections. These are weighted at
the input to a neuron by the connection function. The weights
define the coupling strength (synapses) of the respective
connections and are established via a learning process, in the
course of which they are modified according to given patterns
and a learning rule. In the case of supervised learning, in
addition to the input patterns, the desired corresponding output
patterns are also presented to the network in the training phase.
In the case of unsupervised learning, the network is required to
find classification criteria for the input patterns independently.
Stochastic learning methods employ random processes and
probability distributions to minimize a suitably defined energy
function of the network. A large number of neural models now
exist, and each of these models is available in various forms.
The Integrand-and-Fire (IF) neuron model [37] is often used in
to create ANNs suitable for classification and forecast tasks.
However when dealing with ANNs, as shown by Goodner
et al [36], the risk of data over-fitting can lead to counterfeit
classifications. According to these authors the ratio between
samples and variables should be greater than 6 in order to
obtain reliable results.

3.1. Multi-layer perceptron (MLP)

The multi-layer perceptron (MLP) [37] is a type of neural
network, where the IF neuron model is adopted, allowing
representation of the relations between input and output values.
This type of network is trained with the help of a supervised
learning method, i.e. input and output values are specified and
the relations between them are learnt. The neural network
approximates every nonlinear mapping of the form y = f (x).
Every data record consists of input data and the corresponding
output data. The MLP learns the input/output behavior of the
system examined via a training data set.

In the training phase, for each data record, each activation
function of the artificial neurons is calculated. The weight
wij of a generic neuron i at the time T, for the input vector
f k

n = f k
n1

, . . . , f k
nF

, is modified on the basis of a well-
established technique, the propagation of the resulting error
between the input and the output values. The response of
the MLP is a Boolean vector; each element represents the
activation function of an output neuron. After the training
process, the performance of the classification task is commonly
evaluated using the confusion matrix [38]. The generic
element rij of the confusion matrix indicates as a percentage
how many times a pattern belonging to the class i was classified
as belonging to the class j . A more diagonal confusion matrix
corresponds to a higher degree of classification. Since each
pattern may be confused with more than 1 pattern, the sum
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on each row and column may differ from the value of 100%.
In order to check the generalization capability of the neural
network, a cross-validation process is carried out.

3.2. Kohonen self-organizing maps (KSOM)

A Kohonen self-organizing map (KSOM) [39] maps the
original space into a two-dimensional net of neurons in such a
way that close neurons respond to similar signals, in order
to solve classification tasks and to find structures in data.
KSOMs are unsupervised neural networks, i.e. they exploit
similarities of samples apart from the class which they belong
to. In the unsupervised training process, the synaptic weight
vectors of the artificial neurons of the KSOM are adapted
by means of the training data set examples in such a way
that the KSOM supplies as good a representation as possible
for the training data set. The synaptic weight vector of
an artificial neuron of a KSOM corresponds to the feature
vector of an object in the feature space under study. In a
KSOM, a winner-takes-it-all training algorithm is performed.
In this work the IF neuron model was adopted. It is
worth mentioning that the KSOM learns to discriminate in
such environmental conditions; therefore, in the case of
uncontrolled environmental parameters, a new data set for each
measurement campaign is needed. For each input vector, the
neuron that has the minimum distance d = mini ‖f − wi‖
from the input vector is the winning unit z. The weight
wij of a generic neuron i at the time T, for the input vector
f k

n = f k
n1

, . . . , f k
nF

, is modified as follows [39]:

wij (T ) = wij (T − 1) + α(T )riz(T )[f j (T ) − wij (T − 1)],

where α(T ) = fαα(T − 1) is the learning rate with a learning

rate factor, riz(T ) = e− d2

σ2 is the feedback function of the
neuron i to the winning neuron z, and σ(T ) = fσσ (T − 1) is
the learning radius with the learning radius factor fσ .

The response of the KSOM is a Boolean vector; each
element represents the activation function of a neuron. After
the training process, a supervised labeling step is performed.
Cluster labels are assigned to the individual artificial neurons.
This is done via the interpretation of the content of the synaptic
weight vectors (feature vectors) of the artificial neurons. Here
the same label can be assigned to several artificial neurons so
that the cluster can be represented by several artificial neurons.
After validation of the KSOM by examples of a test data set, the
performance of the classification task is commonly evaluated
using the above-mentioned confusion matrix. In order to check
the generalization capability of the neural network, a cross-
validation process is carried out. In this work, we fixed the
parameters α(T ) = 0.8, fα = 0.85, σ (0) = 5, fσ = 0.9 and
a training of 5000 epochs, which allows one to obtain the best
performance of the network for the above-mentioned artificial
olfactory and gustative systems.

3.3. Fuzzy Kohonen self-organizing maps (FKSOM)

A fuzzy Kohonen self-organizing map (FKSOM) [40]
combines characteristics of the fuzzy C-means algorithm [41]
and the above-mentioned Kohonen network. An unsupervised

learning method is used. FKSOM can represent any
desired class forms in the feature space. Classification is
unambiguous, i.e. one classified object is assigned to exactly
one class. In the learning phase, however, the fuzzy C-means
algorithm is used to optimize the learning process. Fuzzy
C-means is a fuzzy cluster method, suitable for classification
tasks, which determines the class prototypes for an existing
data set and a specified number of classes. Each of the so-
called cluster centers represents the typical object for one class.
The fuzzy C-means algorithm assigns a classification of 0 to
1 between each object to be classified and each class. This
method allows hypersphere-shaped classes to be found in a
multi-dimensional feature space. An object to be classified
is described by the input vector f k

n = f k
n1

, . . . , f k
nF

. No
information on class assignment is required for clustering as
it is an unsupervised learning method. Classification is based
on the calculation of a distance. After the training process, a
supervised labeling step is performed; the performance of the
classification task is commonly evaluated using the confusion
matrix and a cross-validation process.

3.4. The cortical-based artificial neural network (CANN)

The complexity of a biological neuron may be reduced by using
several mathematical models. Each of these reproduces some
of the functionalities of real neurons, such as the excitability in
response to a specific input signal. The most accurate model
for a biological neuron has been developed by Hodgkin and
Huxley [45]. Such a model is able to exactly reproduce the
shape of the action potential of a neuron by taking into account
the involved ionic currents, but it is computationally expensive.
It takes about 1200 FLOPs to simulate 1 ms of a single neuron
activity. Several attempts have been made in order to reduce
the mathematical complexity of a neuron model: the Morris–
Lecar model [46], still close to the Hodgkin–Huxley model,
takes about 600 FLOPs for 1 ms of neuron activity, while the
FitzHugh and Nagumo model [47] takes about 72 FLOPS
for 1 ms of neuron activity. Izhikevich [42, 43] recently
developed a simple model for an artificial neuron which is
able to reproduce almost all the functionalities of the biological
neurons. The model, consisting of two differential equations
with four parameters, takes 13 FLOPs to simulate 1 ms of
neuron activity. In this work, the Izhikevich model was used
and the spike-timing-dependent plasticity (STDP) rule [48],
which permits the implementation of a learning rule based on
patterns which continuously flow from a data set, has been
adopted according to the TNGS of Edelman [44].

3.4.1. The artificial neuron model. In the CANN, the
artificial neuron model proposed by Izhikevich [45] was
adopted. The model is given by:{

v′ = 0.04v2 + 5v + 140 − u + I

u′ = a(bv − u)

with the condition:

if v � +30 mV, then

{
v ← c

u ← u + d.
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The four parameters (a, b, c and d) are dimensionless
values. The v variable represents the membrane potential of
the neuron, while u takes into account the activation of K+

ionic currents and the deactivation of the Na+ ionic currents.
The I variable takes into account the synaptic currents and the
bias currents as the input signal of the neuron. Depending on
the values of the four parameters, the system may have a steady
state (which corresponds to a lack of activity in the neuron) and
an unsteady state (which corresponds to the presence of activity
in the neuron). The reset condition is needed to perform the
return of the system into the steady state after the neuron has
fired.

3.4.2. Selection of neuronal groups. The TNGS proposed
by Edelman [44] suggests a novel way for understanding
and simulating neural networks. The time variable is taken
into account in the learning task, so that neural groups may
arise from a selection process. The correspondence between
synaptic weights and axonal delays exists as a result of the
neuron behavior. One neuron can belong to many groups,
whose count is usually higher than the count of the neurons in
the map. This guarantees a memory capability which is higher
than the capability reached by the classical artificial neural
networks. The classical approach in ANN simulation takes
into account the modulation of the action potential rhythm as
the only parameter for the information flowing to and from
each neuron. Such a strategy seems to be in contrast with
novel experimental results [44, 48], since neurons are able
to generate action potentials which are based on the input
spike timings, with a precision up to 1 ms. The spike-timing
synchrony is a natural effect that permits a neuron to be
activated in correspondence with synchronous input spikes,
while the neuronal activation of the post-synaptic neuron is
negligible if pre-synaptic spikes arrives asynchronously to the
target neuron. Axonal delays usually lie in the range 0.1 ms–
44 ms, depending on the type and location of the neuron
inside the network. Such a property becomes an important
feature for the selection of the neural groups. The selection
of neural groups is the result of the variation of synaptic
connection according to the STDP rule. If a spike coming
from an excitatory pre-synaptic neuron causes the firing of the
post-synaptic neuron, the synaptic connection is reinforced
since it gives the possibility of generating another spike
in order to propagate the signal. Otherwise the synaptic
connection is weakened. The values of the STDP parameters
are chosen in order to permit a weakening that is greater than
the reinforcement. Such a strategy permits the progressive
removal of the unnecessary connections and the persistence of
the connections between correlated neurons.

3.4.3. Architecture design. On the basis of the approach
followed by Izhikevich [48], the CANN architecture design is
inspired by the anatomical structure found in the mammalian
cortex. In respect to the total number (N) of neurons, a
percentage equal to 80% consists of excitatory neurons, while
the remaining 20% are inhibitory neurons. A single CANN of
1000 artificial neurons consisting of 200 inhibitory neurons
and 800 excitatory neurons was implemented. Cortical

pyramidal neurons showing a regular spiking (RS) behavior
were adopted for the excitatory subsection, corresponding to
the following values for the Izhikevich neuron model: a =
0.02, b = 0.2, c = −65, d = 8 [43]. Inhibitory neurons have
been simulated adopting the model of the cortical interneurons
which exhibits a fast spiking (FS) property: a = 0.1, b =
0.2, c = −65, d = 2) [43]. Each neuron is connected to M
different neurons in order to obtain a connection probability
(M/N) equal to 0.1, but inhibitory neurons are connected
only to excitatory neurons. Moreover, the synaptic weights
of the connections arising from the inhibitory neurons remain
unchanged during the learning process, while those regarding
the connections from the excitatory neurons change according
to the STDP rule. Axonal delays are fixed in the range between
1 ms and 20 ms. The time resolution has been set to 1 ms. The
single rows of the input data set are dispatched to a subset of
the excitatory neurons.

As the application starts, all the connections have the
same synaptic weight. The network needs many seconds
to get stabilized through depression and strengthening of the
synaptic weights. During this first phase, the network shows
the presence of a high amplitude rhythm, with a frequency
in the range between 2 Hz and 4 Hz (delta waves). After a
few hours of network activity, the spiking rhythm becomes
uncorrelated and frequencies in the range between 30 Hz and
70 Hz appear (gamma waves). The occurrence of such rhythms
is called pyramidal-interneuron network gamma (PING) and it
seems to be related to the spikes of the pyramidal cells which
excite the inhibitory interneurons. Such interaction allows a
mutual inhibition which temporarily switches off the network
activity. As the network becomes stable, the oscillation rhythm
is assessed in the frequency range between 2 Hz and 7 Hz and
the training phase is ended. We noticed the presence of a
large number of neural groups, each of them able to perform
a reproducible spike sequence with a precision of 1 ms. A
labeling procedure allows one to associate a specific pattern to
a neural group. Each stimulus that is used as an input pattern
is able to select one group inside the network, showing that
the network is able to perform a classification task.

4. Experimental results

4.1. Application to the e-nose

The e-nose was used to analyze the headspace of certified olive
oil samples. A trained panel test assessed 60 olive oil samples
from different regions (Tuscany, Apulia and Sicily) classified
by an official panel test as extra virgin, virgin and defective.
Classes were denoted as ExVg, Vg, Df, respectively. With
the aim of replicating the experiment three times, 180 vials
(volume 125 ml) were prepared by pouring 10 ml of each of
the 60 olive oil samples in three vials, sealing and then waiting
a few hours for equilibration. Three series of measurements
were performed for each vial at the same environmental
conditions, for a total of 540 experiments. The headspace
of each vial was conveyed using a gas carrier (nitrogen) with a
flow rate of 200 ml min−1 into the exposure chamber where the
sensor array was lodged. The experimental protocol consisted
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Table 1. Mean percentages of the confusion matrix.

ExVg Vg Df

MLP KSOM MLP KSOM MLP KSOM

ExVg 63.6 93.9 32.6 4.5 3.8 1.6
Vg 22.5 13.9 67.2 82.5 10.3 3.6
Df 2.2 0.0 21.0 3.2 76.8 96.8

FKSOM CANN FKSOM CANN FKSOM CANN

ExVg 95.0 97.8 3.8 2.2 1.2 0.0
Vg 12.7 1.6 83.8 96.1 3.5 2.3
Df 1.9 0.0 4.4 0.3 93.7 99.7

of 100 samplings of baseline acquisition, 400 samplings of
exposure and 200 samplings of desorption. Sensor responses
were sampled with a scan rate of 0.1 s.

The above-reported pattern recognition techniques and
the proposed CANN were trained in order to classify the
olive oil samples in terms of their quality. In order to check
the generalization capability of the neural networks, a k-fold
cross-validation was carried out. Cross-validation is one of
several approaches for estimating the performance of a model
on future as-yet-unseen data. In k-fold cross-validation, the
original data set is partitioned into k subsets. For each cross-
validation step, a single subset is retained as the test set, and the
remaining k − 1 subsets are used as a training set. The cross-
validation process is then repeated k times, with each of the k
subsets used exactly once as the test set. The k results from the
folds then can be averaged (or otherwise combined) to produce
a single estimation. In this work a 5-fold cross-validation was
applied; each fold consisted of randomly selected samples,
at least one for each category index was included in each
fold.

A topological analysis of the KSOM and the FKSOM
shows in each test the presence of minimally overlapping
zones. In order to quantify results obtained in the cross-
validation, a labeling process for the KSOM, the FKSOM and
the CANN, and a test process for the MLP allowed samples to
be classified as belonging to at least one of the three classes.
Table 1 summarizes the mean percentages of the confusion
matrix resulting from the cross-validation procedure.

As can be noticed, the MLP shows the worst
performances, while the CANN is proved to exhibit the best
performance. As expected [31], KSOM is able to classify
ExVg, Vg and Df classes with accuracy rates respectively
of 93.9%, 82.5% and 96.8%, while the FKSOM has 95.0%,
83.8% and 93.7%. The CANN performances are respectively
97.8%, 96.1% and 99.7%, showing a mean performance
increase of 7.0% in comparison with the KSOM and of 7.7%
in comparison with the FKSOM. But the best performances
can be underlined in terms of misclassification, i.e. when a
sample is classified as another one. In this case, the CANN
performances get better up to 32%, in comparison with the
MLP misclassification (ExVg misclassified as Vg), and up to
13% and 12%, in comparison respectively with the KSOM and
FKSOM misclassification (Vg misclassified as ExVg).

Table 2. Mean recognition percentages for glucose (G), sodium
dehydrocholate (SD), sodium chloride (SC), citric acid (CA) and
glutamic acid (GA).

MLP KSOM FKSOM CANN

G 56.3 68.5 65.8 86.3
SD 65.0 75.2 70.1 91.9
SC 78.2 90.8 89.1 95.2
CA 75.4 92.2 93.0 99.5
GA 67.8 83.2 85.1 94.8

4.2. Application to the e-tongue

The e-tongue was used to analyze five compounds with
different chemical characteristics (a carbohydrate, two salts, a
weak organic acid and an amino acid) able to elicit different
kinds of gustative perceptions (glucose at 0.1 M, sodium
dehydrocholate at 0.01 M, sodium chloride at 0.1 M, citric acid
at 0.5 M and glutamic acid at 0.06 M), representing the five
classic tastes. Measurements were performed at concentration
levels chosen so as to fit the human range of sensitivities. Over
one hundred measurements were carried out over a four month
period. As regards the KSOM and the FKSOM a topological
analysis showed the presence of minimally overlapping zones
for each test. In order to quantify results obtained in the cross-
validation, a labeling process for the KSOM, the FKSOM and
the CANN, and a test process for the MLP allowed samples
to be classified as belonging to at least one of the five classes.
Mean recognition percentages are summarized in table 2.

Also in the e-tongue, the MLP shows the worst
performances, while the CANN is proved to exhibit the
best performance. The CANN mean performances arise
in comparison with the MLP, the KSOM and the FKSOM,
respectively up to 25.0%, 11.6% and 12.9%.

5. Conclusions

Can mammalian cortex models enhance the recognition of
patterns in artificial implementations of biological systems?
Yes, they can. In this paper the pattern recognition module
of an e-nose and e-tongue was implemented respectively
by a cortical-based artificial neural network, a multilayer
perceptron, a Kohonen self-organizing map and a fuzzy
Kohonen self-organizing map. In particular, in the cortical-
based artificial neural network, an artificial neuron model
and a learning strategy with high computational efficiency
and biological accuracy were adopted. The networks were
singularly described and applied in the classification task
of large datasets coming from a conducting poly(alkoxy-
bithiophenes) sensor-based e-nose and a composite array-
based e-tongue. The comparison of results showed that the
cortical-based artificial neural network is able to enhance the
recognition percentages of both the e-nose and the e-tongue
in terms of classification and misclassification, successfully
demonstrating the improvement of the performances.
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