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Abstract Aim of the present study is to model the human mental lexicon, by focussing on storage

and processing dynamics, as lexical organisation relies on the process of input recoding and adap-

tive strategies for long-term memory organisation. A fundamental issue in word processing is rep-

resented by the emergence of the morphological organisation level in the lexicon, based on

paradigmatic relations between fully-stored word forms. Morphology induction can be defined as

the task of perceiving and identifying morphological formatives within morphologically complex

word forms, as a function of the dynamic interaction between lexical representations and distribu-

tion and degrees of regularity in lexical data.

In the computational framework we propose here (TSOMs), based on Self-Organising Maps with

Hebbian connections defined over a temporal layer, the identification/perception of surface mor-

phological relations involves the alignment of recoded representations of morphologically-related

input words. Facing a non-concatenative morphology such as the Arabic inflectional system

prompts a reappraisal of morphology induction through adaptive organisation strategies, which

affect both lexical representations and long-term storage.

We will show how a strongly adaptive self-organisation during training is conducive to emergent

relations between word forms, which are concurrently, redundantly and competitively stored in

human mental lexicon, and to generalising knowledge of stored words to unknown forms.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One of the fundamental issues in defining word storage and
processing is modelling the emergence of the morphological

organisation level in the human lexicon, based on paradig-
matic relations between fully-stored word forms.

The task of inducing morphological knowledge from lexical

data can be defined as the task of singling out morphological
urnal of
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formatives from surface word forms. Operationally, the task
consists of the following steps: (i) finding structure in word
forms, and (ii) grouping word forms on the basis of shared

structure. Originally defined by Harris (1955) as a battery of
‘‘discovery procedures” of unclassified training data on the
basis of purely formal algorithms, morphology induction mir-

rors the interplay between structured representation and the
recoding process.

In spite of their different algorithms, both supervised and

unsupervised machine learning models make a priori assump-
tions on the nature of the task of morphology induction. Super-
vised algorithms tend to rely on specific assumptions on word
representations. Indeed, for most European languages, we can

construe a fixed-length vector representation that aligns input
words to the right, since inflection in those languages typically
involves suffixation and sensitivity to morpheme boundaries.

However, this type of representation presupposes considerable
a priori knowledge of the morphology of the target
language and does not possibly work with prefixation,

circumfixation and non-concatenative morphological processes
in general.

On the other hand, most current unsupervised algorithms

model morphology learning as a segmentation task
(Hammaström and Borin, 2011), assuming a hard-wired linear
correspondence between sub-lexical strings and morphological
structure. Once more, non-concatenative morphologies can

hardly be segmented into linearly concatenated morphemes.
In line with recent psycholinguistic evidence on peripheral

levels of automatic morphology segmentations (Crepaldi

et al., 2010; Rastle and Davis, 2008; Velan and Frost, 2011),
modelling human lexical processing and storage should rely
on algorithms more valued for their general capacity to adapt

themselves to the morphological structure of a target language,
rather than for the strength of their inductive morphological
bias.

We show that the same morphology induction algorithm,
with an identical setting of initial parameters and a compara-
ble set of assumptions concerning input representations, is able
to successfully deal with as diverse inflectional systems as, for

example, Italian, German and Arabic, and with diverse mor-
phological phenomena within the same language (e.g. suffixa-
tion, prefixation, infixation and combination thereof in the

Arabic verbal inflection). We suggest that a principled
approach to these issues should be able to replicate some fun-
damental abilities lying at the heart of the human language

processor: (i) recode and maintain time series of symbolic units
(e.g. letters, phonological symbols, morphemes, or words) in
the so-called working memory, (ii) transfer and organise these
representations in the long-term memory, (iii) map input rep-

resentations onto lexical representations for access and recall
them in language usage, (iv) generalise knowledge of stored
words to unknown forms.

Firstly, we outline the theoretical background for the pre-
sent work (Section 2), the computational architecture (Sec-
tion 3) adopted for our experiments, together with the

analysis techniques implemented to inspect the emergence of
morphological structure. Materials, methods, and results are
then illustrated and analysed (Section 4), focussing on how a

strongly paradigmatic co-organisation and co-activation facil-
itate morphological learning, extension and generalisation. A
general discussion (Section 5) follows, summarising our results
Please cite this article in press as: Marzi, C. et al., Arabic word processing and morpho
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in the framework of an integrative model for memory, process-
ing and access strategies.

2. Theoretical background

2.1. Recoding and memory

A fundamental characteristic of the human language faculty
is the ability to retain sequences of symbolic units in the

long-term memory, to access them in recognition and produc-
tion, and to find similarities and differences among them.
Traditionally, lexical acquisition and processing have been

modelled in terms of basic mechanisms of human memory
for serial order, as proposed in the vast literature on immedi-
ate serial recall and visual word recognition (e.g. Henson

(1999), Davis (2010); for detailed reviews). Some of the earli-
est psychological accounts of serial order assume that item
sequences are represented as temporal chains made up of
stimulus–response links. However, it can be difficult to tem-

porally align word forms of differing lengths, thus preventing
recognition of shared sequences between morphologically-
related forms (Davis and Bowers, 2004), in particular in case

of abstract bound morpheme like the discontinuous symbols
of consonantal root in Arabic language (Boudelaa and
Marslen-Wilson, 2004). Conventionally, the task of identify-

ing morphological formatives within morphologically
complex word forms has been taken to model morphology
induction. Accordingly, there is a general problem that any

such model has to address and that appears to be crucial
for morphology induction: the word alignment issue. The
problem arises whenever familiar patterns are presented in
novel arrangements, as when speakers of English are able

to recognise the word book in handbook, or Arabic speakers
can track down the verb root k-t-b in kataba (‘he wrote’)
and yaktubu (‘he writes’). No position-specific letter coding

scheme can account for such ability.
In Davis’ spatial encoding (2010), a letter in a string is

represented as a two-dimensional signal. The identity of the

letter is described as a Gaussian activity function whose
maximum value is centred on the letter’s actual position and
decreases continuously as we move away from that position
either rightwards or leftwards. The function defines a confi-

dence level on the position of the letter in question. String
matching is continuously weighted by levels of positional con-
fidence, thus enforcing a form of fuzzy matching. However, the

approach, as most other psycho-cognitively inspired models
such as the ‘‘open-bigram coding” model (Grainger and van
Heuven, 2003), the ‘‘start–end” model (Henson, 1998) and

the ‘‘primacy model” (Page and Norris, 1998) among others,
is chiefly recognition-oriented and is not readily amenable to
model human word processing, morphology induction and

generalisation.

2.2. Paradigmatic relations

One of the most prominent issues in modelling word acquisi-

tion and processing is represented by the emergence of a level
of morphological organisation in the human lexicon. In the
perspective of adaptive strategies for lexical acquisition and

processing based on emergent morphological relations between
logy induction through adaptive memory self-organisation strategies. Journal of
rg/10.1016/j.jksuci.2016.11.006
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fully-stored word forms (defined as an abstractive approach
after Blevins, 2006), paradigmatic1 relations can be accounted
for as the result of long-term entrenchment of neural circuits

(chains of time-stamped memory nodes) that are repeatedly
being activated.

Discontinuous morphological formatives – e.g. roots in the

Arabic inflectional system – or discontinuous morphological
processes – e.g. circumfixation in German past participles,
Arabic imperfective forms – represent a challenge to the notion

that identical structures are responded to by topologically
adjacent nodes. The root k-t-b is, for example, dramatically
misaligned in kataba and yaktubu, and this may keep the nodes
responding to the root in two – or more – words far apart on

the map. Likewise, machen (‘make, we/they make’) and
gemacht (‘made’ past participle) are temporally misaligned
although sharing the same stem.

In previous works (Marzi et al., 2012c, 2014), we analysed
the paradigmatic organisation of the inflectional morphology
of German and Italian, by focussing on how different types

of related intra- and inter-paradigmatic families induce a
strongly paradigm-related co-organisation and co-activation
so as to facilitate paradigmatic extension and generalisation.

In the framework of Temporal Self-Organising Maps
(TSOMs), a variant of classical SOMs (Kohonen, 2001) aug-
mented with re-entrant Hebbian connections defined over a
temporal layer, which can encode probabilistic expectations

upon incoming stimuli (Koutnik, 2007; Ferro et al., 2010,
2011; Pirrelli et al., 2011; Marzi et al., 2012a,b), we showed
how deeply entrenched chains of nodes are concurrently acti-

vated by morphologically related word forms. In particular,
we highlighted how, from a lexical standpoint, TSOMs exhibit
a straightforward correlation between morphological segmen-

tation and topological organisation of memory nodes.

3. The computational framework

TSOMs are two-dimensional grids of artificial memory nodes,
which are not wired-into maximally respond to specific symbols
(as customary in the more traditional ‘‘conjunctive coding” of

multi-layered perceptrons, Rumelhart and McClelland, 1986),
but can be trained to exhibit dedicated sensitivity to time-
bound symbols. The approach provides a general framework
where word processing and lexical acquisition are implemented

as both recoding and storage strategies for time-series of
symbols, dependent on language-specific factors and extra-
linguistic cognitive functions such as lexical organisation,

lexical access and recall, input–output representations, and
adaptive memory self-organisation (for a detailed description
of the model see Ferro et al. (2011), Marzi et al. (2012b, 2016)).

In its simplest instantiation, a TSOM consists in the topo-
logical (pattern matching) and temporal (pattern synchronisa-
tion) co-organisation of connection weights on multiple levels
of connectivity (Fig. 1).
1 A verb paradigm represents a family of inflected variants of the

same lexical exponent (e.g. play, plays, paying, played), whereas

inflectional classes denote families of similarly inflected forms (e.g.

played, walked, arrived). The role of paradigmatic relations is consid-

ered, in the theoretical and psycho-cognitive literature, as central in

organisation of word forms in speakers’ mental lexicon, facilitating

lexical access and storage (Bybee and Slobin, 1982; Bybee and Moder,

1983; Baayen et al., 1997; among others).

Please cite this article in press as: Marzi, C. et al., Arabic word processing and morpho
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Input connections get synchronous information from the
input layer, where each symbol-stimulus, encoded as a vector
of D components, is sampled at one-time tick. Temporal con-

nections simulate neuron synapses with one-tick delay propa-
gation, with weights determining the amount of influence
that activation of one node at time t has on the activation of

nodes at time t+ 1. In this way, temporal connections convey
the probabilistic expectation to activate specific nodes, given
the current activation state of the map.

3.1. Word recoding

Each input word form is represented by a unique time-series of

symbols (be they phonological representations or transcription
letters), which are administered to the TSOM one at a time.

Upon presentation of one symbol on the input layer, all
nodes of the map are activated simultaneously through their

input/spatial and temporal connections:

yS;i tð Þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

D

XD
j¼1

xjðtÞ � wi;jðtÞ
� �2

vuut i ¼ 1 . . .N ð1Þ

yT;iðtÞ ¼
XN
h¼1

½yhðt� 1Þ �mi;hðtÞ� ð2Þ

yi tð Þ ¼ a � yS;iðtÞ þ ð1� aÞ � yT;iðtÞ ð3Þ
where N is the number of nodes of the map, w and m model

respectively the weights of the input and temporal layers,
whose contribution is weighed up by the parameter a. The
overall activation pattern y thus represents the level of activa-

tion of nodes that are best suited for (i) the given input symbol
of the word form, and for (ii) the current temporal context.
The Best Matching Unit (BMU) at time t is defined as the most

highly activated node:

BMU tð Þ ¼ argmaxi¼1...N yiðtÞf g ð4Þ
3.2. Learning algorithm

During learning, Hebbian rules are applied at both layers (pat-

tern matching and pattern synchronisation), so that nodes that
are highly responsive to a given stimulus will get more and
more responsive to that stimulus throughout training. Con-

versely, nodes that are weakly responsive to a stimulus, will
get even less responsive. Specifically, weights on all input con-
nections to BMU(t) are adjusted to be closer to the current

input signal; likewise, all temporal connections to BMU(t)
are adjusted to be more correlated with the overall activation
pattern of the map at time t�1; namely, the connection from

BMU(t�1) to BMU(t) is potentiated, whereas the connections
from all nodes but BMU(t�1) to BMU(t) are depressed.
Weight adjustment spreads radially to neighbour nodes with
a Gaussian function centred on the current BMU. Radial

propagation prompts information sharing and training depen-
dence between topologically adjacent nodes, which are thus
trained to respond alike to similar input stimuli (Pirrelli

et al., 2015).
After training, each BMU can be labelled with the input

symbol the node responds most strongly to.
logy induction through adaptive memory self-organisation strategies. Journal of
rg/10.1016/j.jksuci.2016.11.006
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Figure 1 Outline architecture of a TSOM. Map nodes show the

Integrated Activation Pattern (IAP) for the input string ‘‘#pop$”.

For simplicity, the map nodes are depicted as a one-dimensional

array, where BMU (Best Matching Unit) nodes are labelled and

connected through edges/arcs. Shades of grey depict levels of node

activation. Forward temporal connections between BMUs are

highlighted as black arcs.
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3.3. Word recall

When a time series of input symbols (i.e. a word form) is con-
cluded, the resulting Integrated Activation Pattern (or IAP)

represents the processing response of the map to the whole
input series:

ŷi ¼ maxt¼1;...;k yi tð Þf g ð5Þ

where k indicates the number of symbols making up an input
word. The IAP (ŷ) is a static pattern with no explicit timing
information, which represents the memory trace in the TSOM

for a word form.
Fig. 1 illustrates an IAP for the input sequence ‘#pop$’,

where ‘#’ and ‘$’ mark, respectively, the start and the end of

the sequence.
Given a word’s IAP, it can be used as an input activation

pattern to test whether the trained map can retrieve (recall)

that word from its memory trace. This is achieved through
spreading of activation from the start-of-word node (‘#’)
through the nodes making up the temporal chain of an input

word. At each time step, the map outputs the individual sym-
bol associated with the currently most highly-activated node.
The step is repeated until the node associated with the end-
of-word symbol (‘$’) is output:

yi tð Þ ¼ a � ŷi þ ð1� aÞ � yT;i tð Þ ð6Þ
Please cite this article in press as: Marzi, C. et al., Arabic word processing and morpho
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3.4. Task evaluation

Accuracy of recoding is evaluated to quantify the ability of the
TSOM to correctly recode a word form. When propagating a
time-series of symbols making up an input word (see Eq. (3)),

the word form is recoded correctly if all BMUs are associated
with the correct input symbols.

Likewise, accuracy in recall a word form verifies that the
propagation of its IAP (see Eq. (6)) correctly activates the

BMUs associated with the symbols of that word. Since some
IAPs may be more confusable than others, the ease of recall
a word from its IAP depends on the degree of co-activation

of other non-target IAPs whose BMUs are highly activated
in the target IAP.

During training, each node develops a dedicated sensitivity

to both a possibly position-specific symbol and a context-
specific symbol by incrementally adjusting its synaptic weights
to recurrent patterns of morphological structure. This implies

that an entire pool of nodes, during training, tend to specialise
to respond to any specific input symbol, each node in the pool
showing higher activity levels than all others when the symbols
appear in a particular context. The behaviour is reminiscent of

the graded activation function in Davis’ spatial encoding
(2010), but is in fact more directly related to the functional
co-activation of pools of neurons selectively responding to

the same stimulus type. Co-activation of the same BMUs by
different input words reflects the extent to which the map per-
ceives surface morphological relations between fully-stored

words. We contend that node co-activation represents the
immediate correlate to the perception of similarity between
strings, as witnessed by the huge literature on morphological
priming (Seidenberg et al., 1984; Forster, 1998; among others):

the extent to which two (or more) chunks are perceived as sim-
ilar by the map is given by the amount of shared BMUs that
are involved in processing them, associated with highly co-

activated and blended IAPs.
Given the BMUs associated to a word form, its blended pat-

tern is calculated as the co-activation of other possibly related

word forms. For each BMU of the target word, we evaluate
the level of activation of the BMU in the IAP of any other
words. By averaging the activation levels for each BMU, we

estimate to what extent symbols in one word are shared by
other words.

In this perspective, activation of a sub-pattern shared by
members of the same paradigm prompts the co-activation of

blended IAPs. Due to this dynamic, IAPs represent both
short-term processing responses of the map to input words,
and the long-term knowledge given by routinized BMUs’

connections.
Word forms sharing sub-lexical constituents tend to trigger

chains of identical or neighbouring nodes. In other words, we

found that – for concatenative morphologies topological dis-
tance (proximity) on the map correlates with morphological
similarity. In traditional morpheme-based approaches (see
Halle and Marantz (1993), Embick and Halle (2005), for recent

theoretical revisitations) to word segmentation, this is equiva-
lent to topologically aligning morphologically-related word
forms by morphemic structure.

Given two input words, we can thus measure how similar a
TSOM perceives those word forms by considering the topolog-
ical (i.e. Euclidean) distance on the map between the BMUs
logy induction through adaptive memory self-organisation strategies. Journal of
rg/10.1016/j.jksuci.2016.11.006
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associated with the two words during recoding (an example is
reported in Fig. 2, top panel). Whereas a co-activation distance
between two word forms is calculated as the level of activation

of the BMUs associated to one word in the IAP of the second
word (Fig. 2, bottom panel). As an example, we report topo-
logical and co-activation distances (Fig. 2, top and bottom

panels) for the input forms macht and gemacht, to highlight
how an almost linear morphology (despite the temporal
misalignment of the stem due to the prefix ge-), illustrated by

the German verb system, is conducive to the development of
both topologically-close and strongly co-activated memory
chains.

By facing a non-concatenative morphology such as the Ara-

bic inflectional system, we will show that co-activation repre-
sents the most basic correlate to the notion of similarity in
perception, and from this perspective, topological proximity
Figure 2 Topological distances (top panel) and co-activation

distances (bottom panel) for the German input forms macht (‘she/

he makes’) and gemacht (‘made’, past participle). # and $ stand

respectively for the ‘‘start-of-word” and ‘‘end-of-word” symbols.

The lower the values, the closer and the more co-activated the

BMUs. Distance equal to 0 means that exactly the same node is

activated.

Please cite this article in press as: Marzi, C. et al., Arabic word processing and morpho
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is only a by-product of training a map on concatenative mor-
phological structures.

4. Materials, methods and results

With the purposes of gaining a better understanding of
paradigmatic acquisition and perception of morphological

relations between fully-inflected word forms, we ran two exper-
iments on a portion of the Arabic inflectional lexicon.

First, we selected 46 among the most frequent verb para-

digms (according to a formal classification, see Buckwalter
and Parkinson (2011), and a corpus-based distribution, Penn
Arabic Treebank, Maamouri et al., 2003). The set contains

verbs from various inflectional classes including sound-
regular, geminated (i.e. the second and the third consonant
root-consonants are similar), or ‘‘hamzated” (containing a

hamza as any one of the three root consonants). A few selected
verbs are weak-assimilated (i.e. the first verbal consonant is
w�aw), weak-hollow (i.e. the second verbal consonant is w�aw
or y�a0) or weak-defective (i.e. the third verbal consonant is

w�aw or y�a0). For each paradigm whenever attested we selected
up to 14 distinct inflected forms, namely the first, second and
third masculine singular and plural, the third feminine singu-

lar, for both the perfective and imperfective.
All sampled forms (n= 601) were fully vocalised and

orthographically transcribed according to a normalised ver-

sion of Buckwalter’s transliteration system (see http://www.
qamus.org/transliteration.htm). They were encoded as strings
of lower-case and upper-case alphabetic and non-alphabetic
ASCII characters (e.g. ‘?’ for hamza, ‘$$’ for the sh sound as

in the English pronoun ‘she’) starting with ‘#’ (i.e. the start-
of-word symbol) and ending with ‘$’ (i.e. the end-of-word sym-
bol). A few special Arabic character-diacritic combinations

(e.g. lengthened vowels) were encoded as digraphs of lower-
case and upper-case letters (e.g. ‘aA’ in ‘#,k,aA,n,a,$’), pro-
cessed as one symbol by the map. All symbols were encoded

on the map’s input layer as mutually orthogonal binary
vectors.

4.1. Experiment 1: the emergence of paradigmatic relations

We trained two 40 � 40 node maps on the 601 word types
administered once with a uniform distribution (UD), namely
5 tokens for each word types, and once with a skewed distribu-

tion (SD), as a function (in the frequency range 1–1001) of real
word distribution in the reference corpus (Maamouri et al.,
2003). Each training session was repeated 5 times, and accu-

racy scores were averaged across repetitions to control for ran-
dom variability of individual training sessions.

To simulate low-level memory processes for serial order

and their impact on a coherent morphological organisation,
only information about raw forms was provided during train-
ing. Each input word was administered to a TSOM one symbol

at a time, with memory of past symbols being reset upon pre-
sentation of ‘#’. At each training epoch, input forms were pre-
sented to the map in random order, for a total number of
either 3005 (UD) or 8956 (SD) presentations per epoch, respec-

tively in the two training regimes. Each map’s full training con-
sisted of 100 learning epochs.

After training, we tested the memory content of the maps

and probed their internal organisation on the two tasks of
logy induction through adaptive memory self-organisation strategies. Journal of
rg/10.1016/j.jksuci.2016.11.006
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Table 1 Experiment 1: accuracy of recording and recall tasks, averaged over 5 instances, of both uniform and skewed training regime.

Scores are given per word types (by averaging over 601 different words), and per word tokens (by averaging over all occurrences in our

training set).

Experimental results for uniform (UD) and skewed (SD)

training regime – averaged over 5 instances

Scores

RECODING (%) RECALL (%) S. deviation (%)

UD – accuracy score on types-tokens 100 99.10 1.07

SD – accuracy score on types 100 95.61 2.47

SD – accuracy score on tokens 100 99.19 0.58

Figure 3 Time course of lexical acquisition (recall accuracy) of

uniformly distributed verb forms (blue solid line) vs. realistically

(skewed) distributed tokens (red solid line) and types (shaded red

line), in the learning epoch range 1–50.
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word recoding and word recall. Errors in recoding are counted
when an input symbol activates a BMU associated with a dif-

ferent symbol. Errors in recall may occur when the map misre-
calls one or more symbols in the input string, by either
replacing it with a different symbol or by outputting correct

symbols in the wrong order. Partial recall, i.e. the correct recall
of only a substring of the target word (e.g. ‘#,k,a,t,a,b,$’ for ‘#,
k,a,t,a,b,a,$’), is also counted as an error. Results on both

tasks, at the end of training, are provided in Table 1.
As a general trend, TSOMs memorise word forms by token

frequency, with higher-frequency words acquired and success-
fully recalled at earlier epochs, as shown by the advantage of

correctly recalled tokens in the skewed distribution (red solid
line in Fig. 3) compared to the uniform distribution (blue line
in Fig. 3). Higher token frequency induces lexical entrench-

ment: in fact, in training a TSOM, connection weights are
modulated by the input distribution according to Hebbian
principles. A highly-frequent input tends to repeatedly activate

the same pattern of nodes, strengthening the connections
between sequentially activated nodes (BMUs), and making
high-frequency words being associated with highly responsive
activation patterns.

Frequency accounts for a different trend in acquisition in
the two training regimes for the early learning epochs only.
High frequency favours acquisition of words in isolation,

developing highly specialised activation patterns on the map,
for then interacting with other formally-related word tokens
and with the amount of shared morphological redundancy.

As training goes on, lexical memorisation and processing relies
more and more on the emergence of paradigmatic relations
between morphologically complex word forms. In detail, per-

ception of morphological structure of each input word depends
on finding out what is common and what is different within
any set of paradigmatically-related verb forms, namely their
degree of inflectional redundancy, as a dynamic result of co-

activation level across forms within and between paradigms.
We suggest, in fact, that perception of shared morphologi-

cal structure better correlates with a notion of levels of co-

activation than with topological proximity of BMU nodes,
for those (non-concatenative) morphologies where structures
are more systematically misaligned. Specifically, the underlying

structure of Arabic verb forms requires sensitivity to both time
invariant symbol encoding of the root skeleton (intra-
paradigmatic relations) and a position-sensitivity to time-

bound instances of the same vowel symbol, shown in Fig. 4
(bottom panel). Fig. 4 provides inter-node topological dis-
tances (top panel) and inter-node co-activation distance (bot-
tom panel) for both kataba BMUs and yaktubu BMUs

responding to the input yaktubu and kataba respectively, in a
TSOM trained on Arabic inflected word forms. The BMU of
Please cite this article in press as: Marzi, C. et al., Arabic word processing and morpho
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k in yaktubu is maximally co-activated when the k in kataba

is shown to the map. This is true also for t and b BMUs in yak-
tubu, and for the corresponding BMUs of k-t-b in kataba when
yaktubu is input. Overall, responses of the two pools of nodes

are maximally synchronised when symbols making up the root
k-t-b are presented. We take these levels of co-activity response
to mean that k-t-b are perceived as possible instantiations of

the same consonantal skeleton in both word forms.
Since BMUs become sensitive to both nature (symbol iden-

tity) and timing (context dependence) of an input symbol
through training, the TSOM trained on Arabic verb forms

develops two distinct nodes for each symbol of the root (k, t
and b): one for the perfective form and one for the imperfective
form. When either k, t or b is shown as an input stimulus, both

radical-nodes (i.e. the two instances of the same radical sym-
bol) fire concurrently, but the most contextually specialised
ones show stronger activity. This explains co-activation dis-

tances slightly above zero on the consonantal skeleton. Two
nodes can be topologically very close on the map by being part
of a cluster of nodes responding to identical symbols, or they

can only accidentally be very close due to two-dimension topo-
logical constraints, as witnessed by the small topological dis-
tance between the end-of-word symbol ($) and one of the u
symbols. The highly non-linear and non-concatenative nature
logy induction through adaptive memory self-organisation strategies. Journal of
rg/10.1016/j.jksuci.2016.11.006
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Figure 4 Best Matching Unit (BMU) distances for the input

forms kataba (‘he wrote’) and yaktubu (‘he writes’). # and $ stand

respectively for the ‘‘start-of-word” and ‘‘end-of-word” symbols.

Top panel: topological distances for the input forms kataba and

yaktubu. The lower the values, the closer the BMUs on the map.

Bottom panel: co-activation level distances for the input forms

kataba and yaktubu. The lower the values, the more highly co-

activated the BMUs.

2 A regular verb paradigm presents all root symbols in any inflected

forms, as opposed to irregular paradigms, where a hamza, w�aw or y�a’ is

one of the root consonants, which may either change their seats

(hamza) or may be assimilated, deleted or turned into vowels (Ryding,

2005).
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of Arabic morphology is not conducive to the development of

topologically-close chains, since the topological radial propa-
gation during learning is not supported by a continuous left-
context. Rather, node specialisation is the result of language

specific patterns repeatedly recurring in input. Positional spe-
cialisation of consonantal nodes thus reflects the specific
arrangement of consonants in Arabic morphology. More com-

binatorial morphotactic systems would hardly prompt the
same type of sensitivity.

The amount of general, distributed resources that are allo-

cated by a TSOM through learning largely correlates with sen-
sitivity to a graded perception of morphological regularity. On
average, paradigms that are perceived as internally more
coherent (higher levels of co-activation) are acquired easier.
Please cite this article in press as: Marzi, C. et al., Arabic word processing and morpho
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We observe, in fact, a significant inverse correlation
(slope = �0.4, p < 0.02) between the time course of word
acquisition in verb paradigms and an increasing perception

of shared structure, calculated for each word as the number
of paradigmatically-related forms that successfully co-
activated root symbols (in the activation range of 90–100%,

i.e. at a maximum co-activation distance of 0.1). The more
verb forms co-activate their radical symbols, the earlier their
learning epoch, as shown by a linear mixed effect model

(Fig. 5). Since word frequency and word length are known
to affect word acquisition, we added these variables as fixed
effects.

To verify in more detail perception of the amount of mor-

phological structure shared by all inflected forms of each verb
by a TSOM, we considered the level of co-activation for
BMUs of non-target words, given a paradigmatically related

word. Two examples are shown in Figs. 6 and 7. Levels of
co-activation in blended patterns are computed per each input
symbol to indicate how much support any activated BMU gets

on the map from a pool of related/neighbouring words.
Fig. 6 shows the overall level of co-activation (grey bars)

for each related word, as symbols of a given input word are

administered to the map at consecutive time ticks. Blended
patterns are calculated as averaged co-activation levels for
each symbol (black bars). Different levels of co-activation in
blended patterns represent more or less support from

paradigmatically-related words. Fig. 6 offers an example of a
regular2 and highly entropic paradigm, where word types shar-
ing the same stem are more uniformly attested. It is the case,

for example, of the verb paradigm of kataba (‘write’), where
for the input form yaktubu we observe supported and blended
patterns, since their memory traces co-activate memory traces

of the other paradigmatically-related forms to a great extent.
In addition, perception of morphological structure emerges

not only from intra-paradigmatic relevant formal redundancy.

Support from parallel co-activation prompts a distributed pro-
cessing also on the inter-paradigmatic dimension, where word
forms sharing the same inflectional affixes show highly congru-
ent levels of co-activation associated with shared morphologi-

cal structure (see Fig. 7, for an example of all attested third
masculine singular forms of the imperfective).

Here, we observe an inter-paradigmatic propagation of

activation from both ya- and yu- prefixed imperfective forms
to a target word (yaktubu in the example show in Fig. 7). Con-
versely, there is almost no co-activation on the radical pat-

terns, which strongly affects co-activation within members of
the same paradigm.

Our results have interesting implications. TSOMs demon-
strably develop the notions of ‘‘verb root” and of ‘‘inflectional

pattern”, as less or more distributed and blended patterns of
nodes showing persistent co-activation levels for all forms
within the same paradigm (see example shown in Fig. 6),

and across paradigms (see example shown in Fig. 7)
respectively.

Distributed activation patterns prove to be able to keep

track of symbols of the radical skeleton that are attested in
logy induction through adaptive memory self-organisation strategies. Journal of
rg/10.1016/j.jksuci.2016.11.006
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Figure 5 Marginal plot of interaction effect between number of

perceived neighbours (NNB) relying on co-activation of radical

symbols (x-axis) in an LME model fitting word learning epoch (y-

axis). Fixed effects: NNB, word frequency, word length. Random

effects: TSOM instances (n= 5).
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forms of the same paradigm. To evaluate internal perception
of the shared root symbols within paradigms, we measured
the co-activation levels of all the radical symbols shared by
all inflected forms in a paradigm (Fig. 8).

The highly discontinuous morphological formatives in the
Arabic verb system prompt a dynamic sensitivity to the most
prominent patterns of lexical redundancy in the input, and

to symbols of the radical skeleton in particular.
It can be observed that forms in some irregular paradigms

co-activate root symbols as strongly as in regular ones, since

for those paradigms, in all inflected forms of our training
set, one of the root consonants is either deleted or shifted into
long vowel (e.g. y�a’ in zaAla and w�aw in kaAna). In these

cases, co-activation levels are averaged on two symbols of
the root skeleton only.
Figure 6 Blended patterns for the input form yaktubu: Different leve

range of 90–100%, i.e. at a maximum co-activation distance of 0.1)

Frequencies of input forms are given in brackets.
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This evidence is an example of the resulting combination of
various dynamic properties affecting lexical access and pro-
cessing: namely possible co-occurrences of different stimuli in

a certain time window (syntagmatic relation), and possibly
competing stimuli in a complementary distribution (paradig-
matic relation).

This also reflects two interacting dimensions of memory
self-organisation in TSOMs: (i) a linear dimension, which con-
trols the level of predictability and entrenchment of memory

traces (chains of serially activated BMUs) in the lexicon by
strengthening weights over inter-node Hebbian connections;
and (ii) a vertical dimension, which controls for the number
of similar, paradigmatically-related word forms that get co-

activated when a member of a paradigm is input to the map
(Pirrelli et al., 2014).

4.2. Experiment 2: generalisation

The repeated exposure to the underlying structure of Arabic
verb forms enforces sensitivity to both time invariant symbol

encoding (intra-paradigmatic relations) and time-bound
instances of input symbols (inter-paradigmatic relations), and
that this favours both intra- and inter-paradigmatic extension

and generalisation to unknown forms.
In a second experiment, we thus tested the ability of a

TSOM to recode unattested forms by generalising morpholog-
ical knowledge of stored words to new forms. Starting from

the 46 paradigms selected for our training set, we selected 45
additional derivationally-related forms (the maṣdar, i.e. the
verbal noun).

We contend that co-activation implies information sharing:
the more two IAPs are co-activated, the more they may com-
pete for activation and contribute each other to access the

input word. Such a pool of highly synchronised nodes shared
by more IAPs forms a ‘‘blended” pattern, responding to a
set of similar input words (Marzi and Pirrelli, 2015).
ls of activation in the blended pattern (black bars, in the activation

show more or less support from paradigmatically-related words.

logy induction through adaptive memory self-organisation strategies. Journal of
rg/10.1016/j.jksuci.2016.11.006
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Figure 7 Blended pattern support of all imperfective 3rd singular masculine forms (grey bars) when the form yaktubu is input (black

bars, in the activation range of 90–100%, i.e. at a maximum co-activation distance of 0.1). Frequencies of input forms are given in

brackets.
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We observe a significant stronger co-activation
(p< 0.0001) of stored forms of regular paradigms than irreg-

ular ones when untrained maṣdar forms are shown to the map
(Fig. 9).

We, thus, assessed the degree of perceived similarity

between the trained inflected verb forms of each paradigm
and their derivationally-related maṣdar forms (see ‘x’ signs in
Fig. 8, Section 4.1), by measuring how strongly the maṣdar
root is co-activated by its related verb forms. When a novel
form is perceived as similar to already stored forms, its activa-
tion pattern can rely on sublexical patterns of intra-
paradigmatically related forms.

Interestingly, the derivationally-related maṣdar of irregular
paradigms does not greatly benefit from the cumulative co-
activation pattern of already stored verb forms, where forms

show, and co-activate, two symbols of the root skeleton only
(e.g. zaAla and kaAna).
Please cite this article in press as: Marzi, C. et al., Arabic word processing and morpho
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In this perspective, being able to strongly co-activate symbols
of the root in both trained and novel, untrained word forms, is

fundamental for paradigm induction, and requires considerable
flexibility in perceiving/co-activating novel words on the basis of
other morphologically-related, stored word forms.

Morphological regularity in Arabic verb inflection thus
appears to be more in line with a global, systematic consistency
of morphologically-related word families in the lexicon, allow-

ing one novel form to be inferred on the basis of other known
forms of the same family, than with a local notion of redun-
dancy among few forms or with a formally defined regularity.
5. General discussion and concluding remarks

Arabic inflectional morphology represents a challenge to selec-
tive specialisation of first-order Markovian chains of memory
logy induction through adaptive memory self-organisation strategies. Journal of
rg/10.1016/j.jksuci.2016.11.006

http://dx.doi.org/10.1016/j.jksuci.2016.11.006


Figure 8 Box plot distribution of number of perceived neighbours (NNB) based on co-activation of root symbols, ordered by perception

of decreasing NNBs (the greater the NNBs, the higher the perceived regularity). Numbers of forms per each paradigm in our training set

are given in brackets. ‘o’ signs mark NNB mean values; ‘+’ signs mark outliers; ‘x’ signs mark untrained maṣdar forms (see Experiment 2,

Section 4.2).
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nodes, due to the chiefly non-linear, non-concatenative nature

of consonantal roots and vowel patterns, and the concurrent
presence of prefixes and suffixes.

We showed that TSOMs prove to be extremely effective in

learning a real portion of the Arabic verb system, achieving
high accuracy levels in the recall task (remarkably close to
those obtained on concatenative morphologies such as Italian

and German, namely 99.8%, standard deviation 0.2% on Ital-
ian tokens in the skewed distribution, and 99.2%, standard
deviation 0.2% on German tokens; Marzi et al., 2016), and
successful in recoding unknown forms on the basis of trained

verb forms.
Our main goal here was to assess to what extent a TSOM

exposed to Arabic input is able to effectively store and recall
Please cite this article in press as: Marzi, C. et al., Arabic word processing and morpho
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verb forms by acquiring principles of their morphological

organisation, and to give an account of general, language
aspecific mechanisms, which govern perception of common,
shared morphological structures, and their access and storage.

In a previous work, we showed that morphological organisa-
tion is the by-product of the topological arrangement of mem-
ory nodes on the map. Chains of nodes responding to the same

stem or affix are either overlapping or are located at a close
distance on the map. By measuring the distance between nodes
responding to the same symbol input, we could assess the level
of perception of shared morphological structure by a trained

map (Marzi et al., 2012c).
Arabic morphology prompts a different and somewhat

unexpected type of organisation. The highly non-linear and
logy induction through adaptive memory self-organisation strategies. Journal of
rg/10.1016/j.jksuci.2016.11.006
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Figure 9 Co-activation of novel forms (maṣdar) with paradig-

matically-related forms in the training set. Distributions are given

per forms in regular vs. irregular paradigms.
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non-concatenative nature of Arabic morphology is not con-
ducive to the development of topologically-close chains.

Instead, effective organisation of memory nodes is achieved
by their propensity to respond to the same symbol at different
positions in time (co-activation). Generally, a node that is
selectively sensitive to a particular symbol in a specific ordered

position reaches a high level of co-activity when the same sym-
bol is shifted by few positions.

Perception of nonlinear, non-concatenative morphological

structures requires more complex processing and storage
strategies than simple sequential chaining or positional
ordering.

We provided a more flexible and effective computational
approach to Arabic word processing than more traditional
approaches, also giving support to a dynamic view of the men-

tal lexicon as an integrative system where lexical information is
dynamically stored, processed, accessed and retrieved (Marzi
and Pirrelli, 2015). In TSOMs, in fact, distributed clusters of
memory nodes get trained to selectively respond to either

time-invariant or context-sensitive recoding of symbols.
Starting from the idea that the way a speaker stores lexical

information reflects the way it is dynamically processed,

through careful data analysis of the computational behaviour
of TSOMs, we gained specific insights into issues of paradig-
matic acquisition and morphological relations between fully-

inflected word forms (Experiment 1). Since words are treated
like input stimuli producing a change in the activation state
of the map, processing and memorising words are modelled
as two sides of one coin. Exposure to an input word, in fact,

triggers the distributed activation of clusters of parallel pro-
cessing units (or nodes) each of which tends to respond more
highly to specific instances of an input symbol (e.g. a letter

or a sound of an input word). Since a map organisation is
not wired-in, but it is the outcome of a process of adaptive
self-organisation, heavily depending on the underling structure

on training data, three basic factors appear to affect word pro-
cessing: (i) similarity: similar symbols trigger overlapping acti-
vation patterns; (ii) frequency: frequent symbols tend to recruit

dedicated nodes; and (iii) symbol timing: nodes react differ-
ently depending on the time-bound context where a symbol
is repeatedly found.
Please cite this article in press as: Marzi, C. et al., Arabic word processing and morpho
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Perception of similarity between words, be they already
stored or novel words, may depend on the most recurrent pat-
terns shared by inflected words that belong to the same

paradigmatic family (Experiment 2).
Adaptivity to frequently recurrent morphological patterns

allows TSOMs to adjust themselves to different morphological

systems. Coherently, processing resources and structures are
dynamically distributed as a function of past experience
(long-term, cumulative frequency effects) and salience (short-

term context-sensitivity effects) in the input. Effects of
language-specific morphological structure on word processing
and storage underline the strong role of relations - and percep-
tion of them between recurrent morphological structures in

word acquisition and processing in concurrent and competitive
storage.
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