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A SELF-ORGANIZING MODEL OF 
WORD STORAGE AND PROCESSING: 

IMPLICATIONS FOR
MORPHOLOGY LEARNING 

MARCELLO FERRO CLAUDIA MARZI VITO PIRRELLI

ABSTRACT: In line with the classical cornerstone of “dual-route” models 
of word structure, assuming a sharp dissociation between memory 
and computation, word storage and processing have traditionally been 
modelled according to different computational paradigms. Even the 
most popular alternative to dual-route thinking − connectionist one-route 
models − challenged the lexicon-grammar dualism only by providing a 
neurally-inspired mirror image of classical base-to-infl ection rules, while 
largely neglecting issues of lexical storage. Recent psycho- and neuro-
linguistic evidence, however, supports a less deterministic and modular 
view of the interaction between stored word knowledge and on-line 
processing. We endorse here such a non modular view on morphology 
to offer a computer model supporting the hypothesis that they are both 
derivative of a common pool of principles for memory self-organization.

KEYWORDS: lexical processing, self organizing maps, morphological 
structure, serial memory.

1. INTRODUCTION

The mental lexicon is the store of words in long-term memory, where 
words are coded as time series of sounds/letters. From this perspective, the 
question of word coding, storage and maintenance in time is unseparable 
from the issue of how words are accessed and processed. In spite of this 
truism, lexical coding issues have suffered unjustifi ed neglect by the Natural 
Language Processing and the Artifi cial Intelligence research communities. 
On the one hand, the unproblematic availability of primitive data structures 
such as ordered lists, strings, hierarchies and the like, recursively accessible 
through processing algorithms, has provided computer scientists with ready-
made solutions to the problem of serial order representation. On the other 
hand, the mainstream connectionist answer to the problem of coding time 
series in artifi cial neural networks, so-called “conjunctive coding”, appears to 
have eluded the problem rather than provide a principled solution. 
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In conjunctive coding (Coltheart et al., 2001; Harm & Seidenberg, 
1999; McClelland & Rumelhart, 1981; Perry, Ziegler & Zorzi, 2007; 
Plaut et al., 1996), a word form like cat is represented through a set of 
context-sensitive episodic units. Each such unit ties a letter to a specifi c 
serial position (e.g. {C1, A2, T3}), as in so-called positional coding or, 
alternatively, to a specifi c letter cluster (e.g. {_CA, CAT, AT_}), as 
customary in so-called  Wickelcoding. Positional coding makes it diffi cult 
to generalize knowledge about phonemes or letters across positions (Plaut 
et al., 1996; Whitney, 2001) and to align positions across word forms of 
differing lengths (Davis & Bowers, 2004). The use of Wickelcoding, on 
the other hand, while avoiding some strictures of positional coding, raises 
the problem of the ontogenesis of representational units, which are hard-
wired in the input layer. This causes an important acquisitional dead-lock. 
Speakers are known to exhibit differential sensitivity to symbol patterns. 
If such patterns are hard-wired in the input layer, the same processing 
architecture cannot be used to deal with languages exhibiting differential 
constraints on sounds or letters. 

The failure to provide a principled solution to alignment issues is 
particularly critical from the perspective of morphology learning. Languages 
wildly differ in the way morphological information is sequentially 
encoded, ranging from suffi xation to prefi xation, sinaffi xation, apophony, 
reduplication, interdigitation and combinations thereof. For example, 
alignment of lexical roots in three diverse pairs of paradigmatically related 
forms like English walk-walked, Arabic kataba-yaktubu ‘he wrote’-‘he 
writes’ and German machen-gemacht ‘make’-‘made’ (past participle) 
requires substantially different processing strategies. Coding any such 
strategy into lexical representations (e.g. through a fi xed templatic 
structure separating the lexical root from other morphological markers) 
has the effect of slipping in morphological structure into the input, making 
input representations dependent on languages. A far more plausible 
solution would be to let the processing system home in on the right sort 
of alignment strategy through repeated exposure to a range of language-
specifi c families of morphologically-related words. This is what conjunctive 
coding cannot do.  

There have been three attempts to tackle the issue of time coding within 
connectionist architectures: Recursive Auto-Associative Memories (RAAM; 
Pollack, 1990), Simple Recurrent Networks (SRN; Botvinick & Plaut, 
2006) and Sequence Encoders (Sibley et al., 2008). The three models set 
themselves different goals: i) encoding an explicitly assigned hierarchical 
structure for RAAM, ii) simulation of a range of behavioural facts of human 
Immediate Serial Recall for Botvinick & Plaut’s SRNs and iii) long-term 
lexical entrenchment for the Sequence Encoder of Sibley and colleagues. 
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In spite of their differences, all systems model storage of symbolic 
sequences as the by-product of an auto-encoding task, whereby an input 
sequence of arbitrary length is eventually reproduced on the output layer 
after being internally encoded through recursive distributed patterns of 
node activation on the hidden layer(s). Serial representations and memory 
processes are thus modelled as being contingent on the task.

In this paper, we take a reversed approach to the problem. We describe 
a computational architecture for lexical storage based on Kohonen’s Self-
Organizing Maps (SOMs; Kohonen, 2001) augmented with fi rst order 
associative connections encoding probabilistic expectations (so called 
Topological Temporal Hebbian SOMs, T2HSOMs for short; Koutnik, 2007; 
Pirrelli, Ferro & Calderone, in press; Ferro et al., 2010). The architecture 
mimics the behaviour of brain maps, medium to small aggregations of 
neurons in the cortical area of the brain, involved in selectively processing 
homogeneous classes of data. We show that T2HSOMs defi ne an interesting 
class of general-purpose memories for serial order, exhibiting a non-trivial 
interplay between short-term and long-term memory processes. They 
simulate incremental processes of topological self-organization arranging 
lexical sequences in maximally predictive graphs and allow us to gain new 
insights into issues of grammar architecture and morphology learning.

2. BACKGROUND

According to the dual-route approach to word processing (Clahsen, 1999; 
Prasada & Pinker, 1993; Pinker & Prince, 1988; Pinker & Ullman, 2002), 
recognition of a morphologically complex input word involves two steps: 
i) preliminary full form access to the lexicon, ii) optional morpheme-based 
access of sub-word constituents, resulting from application of morphological 
rules of on-line word processing to the input word. Step ii) is taken if 
and only if step i) fails to fi nd any matching entry in the lexicon. The 
approach endorses a direct functional correspondence between principles of 
grammar organization (lexicon vs. rules), processing correlates (storage vs. 
computation) and localization of the cortical areas functionally involved in 
word processing (temporo-parietal vs. frontal areas: Ullman, 2004). 

Alternative theoretical models put forward a nuanced, indirect 
correspondence hypothesis, based on the emergence of morphological 
regularities from independent principles of organization of lexical 
information. In the Word-and-Paradigm tradition (Matthews, 1991; Pirrelli, 
2000; Stump, 2001; Blevins, 2006), fully infl ected forms are mutually 
related through possibly recursive paradigmatic structures, defi ning 
entailment relations between forms (Burzio, 2004). This view prompts a 
different computational metaphor than traditional rule-based models. A 
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speaker’s lexical knowledge corresponds more to one relational database, 
thus supporting a one-route model of word competence, than to a general-
purpose automaton augmented with lexical storage (Blevins, 2006).

Over the past three decades, the psycholinguistic literature has shed 
novel light on this controversy. Recent empirical fi ndings suggest that 
surface word relations constitute a fundamental domain of morphological 
competence, with particular emphasis on the interplay between form 
frequency, family frequency and family size effects within mor-
phologically-based word families such as infl ectional paradigms (Baayen, 
Dijkstra & Schreuder, 1997; Taft, 1979; Hay, 2001; Ford, Marslen-Wilson 
& Davis, 2003; Lüdeling & De Jong, 2002; Moscoso del Prado Fermìn et 
al., 2004; Stemberger & Middleton, 2003; Tabak, Schreuder & Baayen, 
2005). However, that more than just lexical storage is involved is suggested 
by interference effects between false morphological friends (or pseudo-
derivations) such as broth and brother, sharing a conspicuous word onset 
but unrelated morphologically (Frost, Forster & Deutsch, 1997; Rastle, 
Davis & New, 2004; Post et al., 2008). The evidence shows that as soon 
as a given letter sequence is fully decomposable into morphological 
formatives, word parsing takes place automatically, prior to (or concurrently 
with) lexical look-up. The emerging view sees word processing as the 
outcome of simultaneously activating patterns of cortical connectivity 
refl ecting redundant distributional regularities in input data at the 
phonological, morpho-syntactic and morpho-semantic levels. This suggests 
that differentiated brain areas devoted to language maximize the opportunity 
of using both general and specifi c information simultaneously (Libben, 
2006; Post et al., 2008), rather than maximize processing effi ciency and 
economy of storage.

T2HSOMs adhere to such a dynamic, non modular view of the 
interaction between memory and computation, whereby word processing 
and learning are primarily conceived of as memory-driven processes. 
They part from both dual-route and one-route approaches in supporting 
the view that the way words are structured in our long-term memory is 
key to understanding the mechanisms governing word processing. This 
perspective focuses on word productivity as the by-product of more basic 
memory processes that must independently be assumed to account for 
word learning. Secondly, it opens up new promising avenues of inquiry by 
tapping the large body of literature on short-term and long-term memories 
for serial order (see Baddley, 2007, for an overview). Furthermore, it gives 
the opportunity of using sophisticated computational models of language-
independent memory processes (Botvinick & Plaut, 2006; Brown, Preece 
& Hulme, 2000; Burgess & Hitch, 1996, among others) to shed light on 
language-specifi c aspects of word encoding and storage.
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3. TOPOLOGICAL TEMPORAL SOMs

T2HSOMs are grids of topologically organized memory nodes, exhibiting 
dedicated sensitivity to time-bound stimuli. Upon presentation of an input 
stimulus, all map nodes are activated synchronously, but only the most sensitive 
node to the incoming stimulus, the so-called Best Matching Unit (BMU), wins 
over the others. Figure 1 illustrates the chains of BMUs triggered by 9 forms 
of German BEKOMMEN ‘become’ on a 40x40 nodes map: bekam ‘became’ 
(1S/3S past tense), bekäme ‘became’ (1S/3S past subj), bekamen ‘became’ 
(1P/3P past tense), bekämen ‘became’ (1P/3P past subj), bekomme ‘become’ 
(1S pres ind, 1S pres subj), bekommen ‘become’ (inf, 1P/3P pres ind, past 
participle, 1P/3P pres subj), bekommst ‘become’ (2S pres ind), bekommt 
‘becomes’ (3S pres ind), bekämst ‘became’ (2S past subj). The map was 
trained on 103 verb paradigms, sampled from the Celex German database, for 
a total amount of 881 verb form types with different frequency distributions. 
     

 

FIGURE 1. ACTIVATION CHAINS FOR 9 INFLECTED FORMS OF GERMAN BEKOMMEN ‘BECOME’. 
UMLAUTED VOWELS ARE CODED AS DIPHTHONGS ON THE MAP. 

In Figure 1, each node is labelled with the letter the node is most 
sensitive to.1 Note that letters are encoded using orthogonal vectors (localist 
coding) so that any symbol is equally distant from any other one.2 Pointed 

1 Each node is assigned a letter label as a thresholded function of yS,i(t), according to 
equation (2) below (see section 5.1 for more detail). 
2 The model is a sequence encoder and is agnostic as to nature and type (e.g. localist vs. 
distributed) of input representations. Reported experiments make use of input data consisting 
of orthographic transcriptions; results, however, are not contingent upon the specifi c 
characteristics of a language orthography, and the same model can be applied to any input 

Trained forms:
bekam
bekäme
bekamen
bekämen
bekomme
bekommen
bekommst
bekommt

Untrained form:
bekämst
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arrows depict the temporal sequence of node exposure (and node activation), 
starting from a beginning-of-the-word symbol # (anchored in the top left 
corner of the map) and ending with the end-of-the-word symbol $. The 
thickness of arrows represents the strength of the corresponding temporal 
connections. The magnifi ed bottom left corner of the fi gure corresponds to 
an area of nodes that show sensitivity to stem ablauting (as in bekommen, 
bekam, bekäme). As will be clearer from the ensuing sections, the topological 
proximity of alternating vowels in stem allomorphs is the result of their being 
systematically distributed in (nearly) identical contexts. In turn, topological 
proximity favours i) convergence of the corresponding activation chains and 
ii) the emergence of a notion of abstract stem as a receptive fi eld of the map.   

3.1 The architecture

Dedicated sensitivity and topological organization are not hard-wired on 
the map but are the result of self-organization through learning, whereby 
neighbouring nodes get increasingly sensitive to input symbols (letters) that 
are similar in both encoding and distribution. 

Figure 2 offers an overview of the architecture of a T2HSOM. Map 
nodes present two levels of connectivity. First, they are fully connected with 
the input vector through connections with no time delay, forming the spatial 
connection layer. Weights on spatial connections are adjusted during learning 
to better respond to input stimuli. Secondly, nodes are mutually connected 
through a temporal layer, whose connections are updated with a fi xed one-
step time delay, based on activity synchronization between BMUs.

 

FIGURE  2. OUTLINE ARCHITECTURE OF A T2HSOM

transcription based on symbol concatenation or phonological coding. 
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Each learning step includes three phases: input encoding, activation 
and weight adjustment. A symbol is represented on the input layer at time 
t through an input vector of x codes. At each exposure, map nodes are 
activated in parallel as a function of i) how close their spatial connection 
weights are to x codes of the current input vector, and ii) how strongly 
nodes are synaptically connected with the BMU at time t-1 over the 
temporal layer. More formally, the activation yi(t) of the i-th node of the 
map at time t is:

(1) )()()( ,, tytyty iTiSi ⋅+⋅= βα

In equation (1), α and β weigh up the respective contribution of the 
spatial (yS,i(t)) and temporal layer (yT,i(t)) to the overall activation level. 
yS,i(t) is calculated on the basis of code similarity, as classically modelled 
by Kohonen’s SOMs (Kohonen, 2001). Each node is activated as an inverse 
function of the distance between the node’s vector of synaptic weights 
on the spatial connection layer and the current input vector. Using the 
Euclidean distance to measure code similarity, the contribution of the i-th 
node on the spatial layer at time t is:

(2) ∑
=

−−=
D

j
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where x(t) is the D-dimensional input vector and wi(t) is the D-dimensional 
spatial weight vector of the i-th node. On the other hand, the contribution on 
the temporal layer is calculated on the basis of a synchronization principle. 
According to the Hebbian rule, the synapses between two neurons get 
stronger if the neurons show a tendency to fi re at a short time distance, and 
they get weaker if the neurons normally do not fi re at short time intervals. 
Using a dot product to evaluate activity synchronization, the contribution of 
the i-th node on the temporal layer at time t is:

(3) ∑
=

⋅−=
N

h
hihiT tmtyty

1
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representing the weighted temporal pre-activation of the i-th node at time t 
prompted by the state of activation of all N nodes at time t-1 (namely y(t-1)) 
and the N-dimensional temporal weight vector of the i-th node (namely mi(t)). 
As a result, weight adjustment affects i) weights on the spatial layer for them 
to get closer to the corresponding values on the input layer and ii) weights on 
the temporal layer for them to synchronize with previously activated BMUs.

Weight adjustment does not apply evenly across map nodes and learning 
epochs, but is a function of the map’s learning rate and space topology. At 
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each activation step, the current BMU is adjusted most strongly, while all 
other nodes get adjusted as a Gaussian function of their distance from the 
BMU (or neighbourhood function). The learning rate defi nes how quickly 
weights are adjusted at each learning epoch, simulating the behaviour of a 
brain map adapting its plasticity through learning. More formally, plasticity 
of the spatial connection weights is driven by the similarity error:

(4) )]()([)( ,, twtxtw jijji −∝Δ  

and plasticity of the temporal connection weights is driven by the 
synchronization error:

(5) 
⎩
⎨
⎧ −

∝Δ
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tm
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hi
hi )(

)(1
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,

,
,  

Figure 3 pictorially illustrates the relationship between equation (5) 
and the neighbourhood function on the temporal connection layer. Unlike 
classical conjunctive representations in either Simple Recurrent Networks 
(Elman, 1990) or Recursive SOMs (Voegtlin, 2002), where both order and 
item information is collapsed on the same layer of connectivity, T2HSOMs 
keep the two types of information stored on separate (spatial and temporal) 
layers, which are trained according to independent principles, namely code 
similarity and fi ring synchronization.

a) 

 

b) 

 

FIGURE 3. WEIGHT ADJUSTMENT AND NEIGHBOURHOOD FUNCTION
ON THE TEMPORAL LAYER OF A T2HSOM.

3.2 Memory structures and memory orders

By being repeatedly exposed to word forms encoded as temporal sequences 
of letters, a T2HSOM tends to dynamically store strings through a graph-like 
hierarchical structure of nodes. A graph starts with a # node and branches 

potentiation
depression
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out when different nodes are alternative continuations of the same history of 
activated nodes (Figure 1). The length of the history of past activations defi nes 
the order of memory of the map. It can be shown that this type of organization 
maximizes the map’s expectation of an upcoming symbol in the input string 
or, equivalently, minimizes the entropy over the set of transition probabilities 
from one BMU to the ensuing one. This prompts a process of incremental 
specialization of memory resources, whereby several nodes are recruited to be 
sensitive to contextually specifi c occurrences of the same letter.

The ability to store a word form through a uniquely dedicated chain of 
BMUs depends on the order of memory of a T2HSOM. It can be shown 
that the order of memory of a T2HSOM is, in turn, a function of i) the size 
of the map (i.e. the number of nodes), and ii) the map’s ability to train two 
adjacent nodes independently.

Figure 4 illustrates how this process of incremental specialization 
unfolds through training. For simplicity, we are assuming a map trained 
on two strings only: #a1 and #b1. Figure 4a represents an early stage of 
learning, when the map recruits a single BMU for the symbol 1 irrespective 
of its embedding context. After some learning epochs, two different BMUs 
are concurrently activated for 1 through equally strong connections (Figure 
4b). Connections get increasingly specialized in Figure 4c, where the 
two 1 nodes are preferentially selected upon seeing either a or b. Finally, 
Figure 4d illustrates a stage of dedicated connections, where each 1 node 
is selected by one specifi c left context only. The stage is reached when 
the map can train each single node without affecting any neighbouring 
node. Technically, this corresponds to a learning stage where the map’s 
neighbourhood radius is 0.  

a) 

 

b) 

 

c) 

 

d) 

 

FIGURE 4. STAGES OF CHAIN DEDICATION, FROM EARLY TO FINAL LEARNING EPOCHS.
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4. LEXICAL PROCESSING AND STORAGE

T2HSOMs are models of both string processing and string storage. In 
activation mode, they provide an incremental coding for incoming input 
signals. For each input symbol, the map’s code for that symbol is the weight 
vector on the spatial connection layer associated with the corresponding BMU 
(Figure 2 above). We can therefore estimate the map’s accuracy in processing 
an input symbol at time t as a function of yS,BMU(t), according to equation (2). 
We can also monitor the map’s capacity to memorize strings by simulating a 
test of lexical recall. Lexical recall is modelled here as the task of generating 
a word form w from the integrated pattern of node activation triggered by 
w. The task is coherent with Baddeley’s view of the interaction between the 
short-term and the long-term memory stores in the speaker’s brain. When the 
map is exposed to a sequence of symbols, the activation pattern triggered 
by each symbol is rehearsed in a short-term buffer. As more patterns (one 
for each symbol in the input sequence) are rehearsed simultaneously, the 
resulting activation state of the short-term buffer is the integration of more 
overlaying patterns (see Figure 5). Lexical recall consists in feeding the 
(long-term) lexical store (a trained map) with such an integrated short-term 
pattern to see if the former can generate all input symbols in the appropriate 
order. Since all symbols are presented simultaneously, this is possible only if 
the lexical map has developed appropriate temporal expectations on incoming 
input symbols. 

More formally, we defi ne the integrated activation pattern Ŷ={ŷ1,…, ŷN } 
of a word of n symbols as the result of choosing:

(6) { } Nityy inti ,...,1)(maxˆ
,...,2

==
=

 

Lexical recall is thus modelled by the activation function of equation (1) 
above, with:

(7) ∑
=

−−=
D

j
jijiS wtxDty

1

2
,, ])([)(  

for t=1 (i.e. when the map is primed with #), and:

(8) )(ˆ)(, tyty iiS =  

for t=2,…,n. 
This is a considerably more diffi cult task than activating a specifi c node 

upon seeing a particular input symbol at time t. For a map to be able to 
correctly reinstate a whole string s from its integrated short-term pattern, 
a time-bound activation chain dedicated to s must be memorized in the 
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long-term store. This means that the map has to develop, through learning, 
a strong expectation to see the incoming input. The strength of such 
predictive drive is measured by yT,i(t) in equation (3) above. Lexical recall 
probes this long-term time-bound expectation.

 

FIGURE 5. PER-LETTER AND INTEGRATED SHORT-TERM ACTIVATION PATTERN FOR #IST$.

5. EXPERIMENTAL EVIDENCE

5.1 Experiment 1

We tested the dynamic behaviour of two 40x40 maps on two tasks: activation 
and lexical recall. One map was trained on 1672 Italian infl ected verb types 
(3901 tokens) sampled from the Italian TreeBank (Montemagni et al., 2003). 
We trained the second map on 881 German infl ected verb types (4995 
tokens) from the German section of the Celex database (Baayen, Piepenbrock 
& Gulikers, 1996), based on the Manheim corpus frequency distributions. 
For both languages, low frequency verb forms that were not used for training 
but were part of verb paradigms shown in training were set aside to form a 
test set of novel (untrained) words (see infra). 

Each word form was input to the map as a letter string preceded by # 
and followed by $ (e.g. #IST$ for ist ‘is’), with all letters common to the 
Italian and German alphabets written in upper-case. Umlauted characters 
were written as lower-case diphthongs (e.g. #BEKaeME for bekäme 
‘became’) and the sharp s ß as ss (e.g. #HEIssEN$ for heißen ‘call’).3 On 
the input layer, letters were recoded as mutually orthogonal binary vector 
codes (localist coding). Identical letter codes were used for upper-case 

3 In both cases, pairs of lower-case letters were processed as forming a single orthographic 
symbol. 
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letters in Italian and German. Both maps were trained on 100 epochs, with 
α=0.1 and β=1. At each epoch all training forms were shown to the map, 
one letter at a time, with the map temporal expectation being reset upon 
presentation of the $ symbol. Each word was randomly shown to the map 
according to its probability distribution in the source corpus. Accordingly, 
more frequent words were presented to the map more often than less 
frequent words. 

We fi rst assessed how well each map could process and recall verb 
forms that were part of the map’s training set (see Table 1). In the activation 
task, we estimated the map’s accuracy in processing an input symbol at 
time t as a function of yS,BMU(t), where yS,BMU(t) is obtained from equation (2) 
above with i = BMU. In particular, the map is taken to process the current 
input letter accurately if √D − yS,BMU(t) < 0.1. The same inequality is also 
used to estimate the map’s accuracy in recalling the input symbol # at time 
t=1. For t=2,…,n, we use the inequality √D − ŷS,BMU(t) < 0.1, where ŷS,BMU(t)
is obtained from equation (8) above with i = BMU.

We also tested the map’s response to a set of untrained verb forms (or 
test set) belonging to verb paradigms shown in training. The Italian test set 
contained 484 verb forms, the German test set contained 188 verb forms. 
Table 1 also gives the results of probing the Italian map on the German test 
set (Italian non-words) and, conversely, probing the German map on the 
Italian test set (German non-words). This was done on both tasks. Overall 
results are reported in terms of percentage of per-word accuracy: each input 
word is taken to be processed or recalled accurately if all its symbols are 
processed or recalled accurately.

% ACCURACY

Italian German

PROCESSING

training set 100 100
test set 97.9 96.2
non-words 53.7 52.9

LEX RECALL

training set 91.0 99.6
test set 82.4 81.9
non-words 3.7 3.1

TABLE 1

5.2 Experiment 2

To test the map’s capacity of developing expectations on the morphological 
structure of the trained verb forms, we used a modifi ed version of Albright’s 
(2002) experimental protocol. We selected 34 novel target forms: 17 Italian 
infi nitives (e.g. #SEMBRARE$ ‘to seem’) and 17 Italian second person plural 
present indicative forms (e.g. #SEMBRATE$ ‘you seem’)  that were not 
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shown in training but were part of the infl ectional paradigms the Italian map 
was trained on. In Italian, both the infi nitive and second present indicative 
forms contain one of three possible thematic vowels (a, e or i), depending 
on their conjugation class. For each target form, we added to the test set two 
nonce forms, generated by replacing the appropriate thematic vowel with 
the two other vowels. For example, if the target form is #SEMBRARE$, we 
included the two nonce forms #SEMBRERE$ and #SEMBRIRE$. Testing 
the map’s response on this set allowed us to assess how well the map recalls 
the correct form and its ungrammatical competitors. The expectation is that 
if the map develops a sensitivity to the paradigmatic structure of Italian 
conjugation, it should be able to assign higher scores to a correct unseen 
verb form, based on training evidence. Here the word score S for a word of n 
symbols is a function of the map’s ability to match the input symbol (SS) and 
to predict it (ST):
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1
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with t=1,…,n and

(11) )1(),()( −= tBMUtBMUT mtS

with t=2,…,n. Overall results are shown in the top half of Table 2 below. 
Note that the difference between the average recall scores on correct (0.475) 
and nonce verb forms (0.409) is statistically signifi cant (p-value < 0.01).

CORRECT FORMS MADE UP FORMS

Count 34 68
Processing accuracy 100% 100%
Recall accuracy 64.7% 35.3%
Average processing score 0.543 0.542
Average recall score 0.475 0.409
Processing hits 50%
Recall hits 67,6%

TABLE 2

We can also conceptualize our test as a classifi cation task. For each 
verb triple (e.g. #SEMBRERE$, #SEMBRERE$ and #SEMBRIRE$) the 
map classifi es the form with the highest S score as the morphologically 
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correct form. Once more, the score was calculated in both processing and 
recall. Figures are reported in the bottom half of Table 2, in terms of the 
percentage of hits (number of correct responses) out of all tested triples.  

6. DISCUSSION AND CONCLUDING REMARKS

T2HSOMs exhibit a remarkable capacity of recoding an incoming word 
form correctly, through activation of the contextually appropriate BMUs. 
This is a very robust behaviour, as shown by our experimental evidence, 
mostly stemming from accurate spatial recoding of input letters. That also 
expectations are involved, however, is shown by the processing errors 
on non-words in our fi rst experiment (Table 1). Here, the Italian map was 
tested on German forms and the German map was tested on Italian forms. 
Results bear witness to the discrepancy between acquired expectations and 
unexpectedly novel evidence.  

Processing expectations, however, are fairly local, contrary to recall 
expectations which can hold over longer stretches of letters. By defi nition, 
recall is based on the map’s capacity of anticipating upcoming symbols based 
on an acquired predictive drive. This is what dynamic storage is about.

Storage involves recruitment of dedicated memory chains, i.e. chains 
of context-sensitive nodes keeping track of repeatedly seen sequences of 
letters. The map’s sensitivity to frequency in recall is shown by the higher 
recall rate on training German verb forms, which present higher frequency 
distributions than the corresponding Italian forms (Table 1). Dedicated 
chains take map’s space, as they require recruitment of specialized context-
sensitive nodes which fi re only when a particular symbol is presented 
within a particular word or word family. Once more, the German training 
set, with fewer word types, makes the map more profi cient in recalling 
familiar word forms. As a general remark, paradigmatic families presenting 
radically suppletive forms (e.g. go-went), unlike morphologically regular 
paradigms, are not conducive to chain sharing. Cases of lexically-
conditioned morphological alternation like bring-brought, on the other 
hand, will be subject to an intermediate storage strategy, between dedicated 
and shared chains, the amount of shared morphological structure depending 
on both token and type frequency of the specifi c morphological alternation.    

A further important aspect of dynamic storage has to do with 
generalization. Not only is the map in a position to access and recall 
familiar strings, but it can also build up expectations about novel 
combinations of letters. The map structures redundant information through 
shared activation chains, thus making provision for chain combinations that 
are never triggered in the course of training. The effect is reminiscent of 
what is illustrated in Figure 4 above, where wider neighbourhoods, typical 



223

A SELF-ORGANIZING MODEL OF WORD STORAGE AND PROCESSING

of early stages of learning, favour more liberal inter-node connections. In 
experiment 1, the map is too small to be able to dedicate a different node 
to a different context-dependent occurrence of a letter. Fewer nodes are 
recruited to be sensitive to several different context-sensitive tokens of 
the same letter type and to be more densely connected with other nodes. A 
direct consequence of this situation is generalization, corresponding to the 
confi gurations shown in Figure 4b and 4c above. Most notably, this is the 
by-product of the way the map stores and structures lexical information. 

Experiment 2 throws in sharp relief a further important issue: memory 
expectations are sensitive to morphological structure. Note that recall 
accuracy – i.e. the map’s capacity of reinstating a novel word form – is 
a direct function of the form’s morphological coherence. Furthermore, the 
average recall score on paradigmatically coherent forms is signifi cantly 
higher that the corresponding score on paradigmatically spurious forms. 
Such a difference is statistically not signifi cant in the processing score, 
which, once more, proves to be sensitive to more local constraints.

It is traditionally assumed that structure-driven generalizations take 
centre stage in language learning, playing the role of default on-line 
mechanisms in language processing. From this perspective, the lexicon is 
a fall back, costly store of exceptions, conveying a comparatively minor 
portion of language competence. The evidence presented here shows that 
another view is possible. Word processing and learning are primarily 
memory-driven processes. Pre-compilation of dedicated long-term memory 
chains is benefi cial for prediction in on-line word processing. Morpheme-
based generalizations, on the other hand, represent shorter chains that 
come into the picture when memory of longer chains (whole words) 
fails, due to either novel, degenerate and noisy input, or to limitations in 
perception/memory spans. This explains the remarkably conservative nature 
of language learning, where over-regularization and levelling effects take 
place occasionally, and supports a more dynamic and less modularized 
view of language processing, where memory and computation, holistic and 
combinatorial knowledge, are possibly two sides of the same coin.
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