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a b s t r a c t

Experimental evidences on the role of the synaptic glia as an active partner together with the bold
synapse in neuronal signaling and dynamics of neural tissue strongly suggest to investigate on a more
realistic neuron–glia model for better understanding human brain processing. Among the glial cells, the
astrocytes play a crucial role in the tripartite synapsis, i.e. the dressed neuron. A well-known two-way
astrocyte–neuron interaction can be found in the literature, completely revising the purely supportive
role for the glia. The aim of this study is to provide a computationally efficient model for neuron–glia
interaction. The neuron–glia interactions were simulated by implementing the Li–Rinzel model for an
astrocyte and the Izhikevich model for a neuron. Assuming the dressed neuron dynamics similar to the
nonlinear input–output characteristics of a bipolar junction transistor, we derived our computationally
efficient model. This model may represent the fundamental computational unit for the development of
real-time artificial neuron–glia networks opening new perspectives in pattern recognition systems and
in brain neurophysiology.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Traditionally, astrocytes have been considered to be non-
excitable cells of the brain able to provide only structural and
metabolic support to the neurons. However, in the last twenty
years, this view has been changing. In fact, the large amount of ex-
perimental data characterizing the communication processes be-
tween astrocytes and astrocyte–neurons showed the possible role
of glial cells in the dynamics of neural tissue. These recent re-
sults on the active functional role of the synaptic glia cells together
with synapses in neuronal signaling (Fellin & Carmignoto, 2004;
Newman, 2003; Nobile, Monaldi, Alloiso, Cugnoli, & Ferroni, 2003;
Parpura et al., 1994; Parpura & Haydon, 2000) propose new ap-
proaches to applied neuroscience. Investigations on a neuron–glia
alternative for the basis of human brain information processing are
currently developing (Volman, Ben-Jacob, & Levine, 2007).

From a physiological point of view, astrocytes regulate the
synaptic signaling current between two neurons modulating the
amount of neurotransmitters into the synaptic cleft through inter-
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and intracellular calcium dynamics (Di Garbo, Barbi, Chillemi, Al-
loisio, & Nobile, 2007; Newman, 2003; Parpura & Haydon, 2000;
Volman et al., 2007). In detail, calcium dynamics is controlled by
the interplay of calcium-induced calcium release, a nonlinear am-
plification method triggering the modulation of the pre-synaptic
and post-synaptic neural activities and promoting depolarizing
currents in neurons (De Pitta, Goldberg, Volman, Berry, & Ben-
Jacob, 2009; Volman et al., 2007). The interplay of calcium-induced
calcium release nonlinear amplification method is dependent on
calcium channels opening to calcium stores such as the endoplas-
mic reticulum, and the action of active transporters that enable
a reverse flux (De Pitta et al., 2009; De Pitta’ et al., 2008; Vol-
man et al., 2007). The level of inositol 1, 4, 5-trisphosphate is
directly controlled by signals impinging on the cell from its exter-
nal environment. The elevation of the intracellular calcium level in
astrocytes, promoted by the extracellular glutamate, triggers the
release of glutamate from the astrocyte, modulating the pre-
synaptic and post-synaptic depolarizing currents in neurons.
Furthermore, inositol 1, 4, 5-trisphosphate dynamics are encoded
by nonlinear amplitude and frequency modulation phenomena,
while calcium oscillations are inherently frequencymodulated (De
Pitta’ et al., 2008).

Concerning derived nonlinear models, there are no extensive
mathematical studies on dynamics of neuron–glia interactions,
and the first systematic attempts to build a self-consistent model
of the tripartite synapse in order to seize its dynamical and com-
putational properties are under development (Allegrini, Fronzoni,
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Pirino & Pirino, 2009; De Pitta’ et al., 2008; Di Garbo et al., 2007;
Volman et al., 2007). Regarding single neurons, the most accu-
rate biophysical model has been developed by Hodgkin and Hux-
ley (Hodgkin & Huxley, 1952), following the so-called Hodgkin and
Huxley Model (HHM). This model is able to exactly reproduce the
shape of an action potential taking into account the involved ionic
currents. The HHM is onerous to be implemented since it requires
about 1200 FLOPs to simulate one millisecond of a single neuron
activity. Several models attempt to reduce the mathematical com-
plexity of such a neuronmodel, i.e. theMorris–Lecarmodel (Morris
& Lecar, 1981) takes about 600 FLOPs, while the FitzHugh–Nagumo
model (FitzHugh, 1961) takes about 72 FLOPs for one millisecond
of neuron activity.

Izhikevich recently developed a simple model for an artificial
neuron (Izhikevich, 2003, 2004). This model is able to reproduce
several functionalities of a biological neuron. It takes 13 FLOPs to
emulate one millisecond of neuron activity. Regarding astrocytes,
the Li–Rinzel (LR) model has been used to describe calcium dy-
namics (Li & Rinzel, 1994; Nadkarni & Jung, 2004). Considering a
minimal neural network model made up of two coupled units, a
neuron and an astrocyte, (the so-called ‘‘dressed’’ neuron), we can
adopt the mathematical formulation for the neuron–glia signal-
ing according to Nadkarni and Jung (Nadkarni & Jung, 2004, 2003).
These authors showed how the astrocyte is critical for the genera-
tion of firing activity of the neuron. More completemodels, includ-
ing plasma membrane calcium fluxes, suggest several differences
compared to the model obtained by these authors (Di Garbo et al.,
2007).

From an engineering point of view, this behavior resembles
the functionalities of a Bipolar Junction Transistor (BJT), where
the collector–emitter current can be viewed as being controlled
by the base–emitter current. A transistor-like model for the
neuron–astrocyte information processes could open new dramatic
perspectives in neuroscience and neuroengineering, as well as
in modern electronics. In this work we demonstrate how the
dressed neuron signaling can be formalized through a transistor-
like transfer function, starting fromevidences in experimental data
obtained by Nadkarni and Jung model (Nadkarni & Jung, 2004,
2003). Future processing architectures can be organized around bi-
dimensional grids of such an interacting artificial dressed neuron.

2. Experimental and biophysical models of tripartite synapses

The tripartite (three-part) synapse involves: a pre-synaptic
neuron releasing neurotransmitters (glutamate)which activates or
inhibits the activity of a post-synaptic neuron, the post-synaptic
neuron and the astrocyte which protects cells by taking up gluta-
mate to prevent overexcitation and secretes growth factors (New-
man, 2003; Parpura et al., 1994; Parpura & Haydon, 2000; Volman
et al., 2007). The astrocyte provides energy via glucose and mod-
ulates receptors function by locally released neurotransmitters.
Regarding the pre-synaptic neuron,we can adopt the artificial neu-
ron model proposed by Izhikevich (Izhikevich, 2007). It consists of
several parameters, two equations and one condition:
Cv′ = k(v − vr)(v − vt)− u+ In
u′ = a[b(v − vr)− u] (1)

with the condition:

if v ≥ vpeak, then

v← c
u← u+ d. (2)

The v variable represents the membrane potential of the pre-
synaptic neuron,whileu, a recovery current, keeps into account the
activation and deactivation of ionic currents. C is the membrane
capacitance, vr is the resting membrane potential and vt is the
Table 1
The model parameters for RS neurons.

C 100 pF a 0.03
k 0.7 b −2
vr −60 mV c −50mV
vt −40 mV d 100
vpeak 35 mV

instantaneous threshold potential. k and b can be found knowing
the neuron’s rheobase and the input resistance. The sum of all
slow currents that modulate the spike-generation mechanism
is combined in the phenomenological mechanism and in the
phenomenological variable u. The In variable takes into account
the synaptic currents and the bias currents as the input signal of
the neuron. All these parameters can easily fit the six fundamental
classes of firing patterns observed in the mammalian neocortex
(Izhikevich, 2007). Even if most of the biologists agree with this
classification, the distinction between the six classes is not sharp;
some subclasses within each class and neurons can change their
firing classes depending on the state of the brain.
Regular Spiking (RS) neurons are the major class of excitatory
neurons in the neocortex. They fire tonic spikes with adapting
(decreasing) frequency in response to injected pulses of dc-current.
The interspike frequency vanishes as the amplitude of the injected
current decreases. Morphologically, RS neurons are spiny stellate
cells in layer 4 and pyramidal cells in layers 2, 3, 5, and 6. Themodel
parameters for the RS neurons are reported in Table 1. In the case of
amodulation coming from an astrocyte, themodel can bemodified
as:
Cv′ = k(v − vr)(v − vt)− u+ In + Iastro
u′ = a[b(v − vr)− u] (3)

with the same condition. Iastro represents the contribution of the
astrocyte in terms of modulation current toward the post-synaptic
neuron.

Astrocyte processes are in close contact with neuronal synapse.
They are accurate sensors of neuronal activity and respond to the
synaptic release of glutamate with oscillations in the intracellu-
lar calcium concentration. Glutamate elevations in astrocyte do-
main trigger the internal release of inositol 1, 4, 5-trisphosphate
(IP3)which stimulates intracellular calciumdynamics. The proper-
ties of intracellular calcium oscillations generated in astrocytes, in-
cluding their amplitude, frequency and propagation, are governed
by the intrinsic properties of both neuronal inputs and astrocytes.
Astrocytes discriminate neuronal inputs of different origins, and
can integrate concomitant inputs responding to calcium eleva-
tions. Calcium dynamics is controlled by the interplay of calcium-
induced calcium release, i.e. a nonlinear amplification method
depending on the calcium channels opening to calcium stores,
such as the endoplasmic reticulum (ER). The action of active trans-
porters (SERCA pumps) enables a reverse flux (see Fig. 1). The level
of IP3 is directly controlled by signals impinging on the cell from
its external environment. In turn, the level of IP3 determines the
dynamical behavior of the LR model. One can therefore consider
the calcium signal as an encoded information regarding the level
of IP3. In detail, by varying two key parameters of the model, the
information can be encoded in amplitude or in frequency modu-
lations of the calcium levels (Fellin & Carmignoto, 2004; Nobile
et al., 2003; Volman et al., 2007). These findings were recently
demonstrated by De Pitta’ et al. (2008). The elevation of the in-
tracellular calcium level in astrocytes, promoted by the extracellu-
lar glutamate, triggers the release of glutamate from the astrocyte
modulating the pre-synaptic and post-synaptic neural activities by
promoting a depolarizing current in neurons (Iastro). When a
neuron fires, it releases quantal amounts of neurotransmitters
(glutamate) into the synaptic cleft. Neurotransmitters bind to the
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Fig. 1. Neuron–astrocyte interaction.

glutamate receptors on the astrocytes, triggering the release of in-
tracellular IP3. The production of intracellular IP3 in the astrocyte
can be assumed as quantized by the model of Nadkarni and Jung
(Nadkarni & Jung, 2004):

d[IP3]
dt
=

1
τIP3

([IP3]∗ − [IP3])+ rIP3Θ(v − 50 mV) (4)

where [IP3]∗ is the equilibrium concentration of IP3. The parame-
ter rIP3 determines the production of IP3 in response to a neuronal
action potential. The production term is activated when the mem-
brane potential v of the pre-synaptic neuron is larger than 50 mV
via the Heaviside function Θ . Production of IP3, [IP3], in the in-
tracellular space of astrocytes triggers the calcium dynamics. The
dynamics of intracellular calcium concentration [Ca2+] can be de-
scribed according to LR model (Li & Rinzel, 1994):
[Ca2+]′ = −Jchan − Jleak − Jpump
q′ = αq(1− q)− βqq

(5)

where q is the fraction of activated IP3 receptor subunits. Calcium
concentration is controlled by 3 fluxes, corresponding to:

Jleak = c1v2([Ca2+] − [Ca2+]ER) (6)

Jpump =
v3 · [Ca2+]2

K 2
3 + [Ca

2+
]2

(7)

Jchan = c1v1m3
∞
n3
∞
q3([Ca2+] − [Ca2+]ER) (8)

where the gating/inactivation variables and their time-scales are
given by:

m∞ =
[IP3]
[IP3] + d1

n∞ =
[Ca2+]
[Ca2+] + d5

(9)

αq = a2d2
[IP3] + d1
[IP3] + d3

βq = a2 · [Ca2+][Ca2+]ER =
c0 − [Ca2+]

c1
.(10)

Nadkarni and Jung (Nadkarni & Jung, 2004) completed the
model linking, bymeans of experimental data, the calcium concen-
tration to the additional current toward the post-synaptic neuron
(Iastro):
Iastro = 2.11 ·Θ[ln(y)] · ln(y)
y = [Ca2+]/nM − 196.69. (11)

3. Neuron–astrocyte transistor-like model

We implemented and simulated the Nadkarni and Jung expres-
sions and the LR model for pre-synaptic current, In(t) and the rIP3
Table 2
The parameters for LR model.

v1 6 s−1 d1 0.13 µM
v2 0.11 s−1 d2 1.049 µM
v3 0.9 µM · s−1 d3 0.9434 µM
C0 2 µM d5 0.08234 µM
c1 0.185 a2 0.2 µM−1 · s−1
K3 0.1 µM

Fig. 2. Threshold curves identifying three separate Iastro(t) behaviors.

Table 3
The fitting parameters of the thresholds.

zi (pA) ni pi

Ith1 78.59 −2.05 0.14
Ith2 136.07 −0.86 0.02

data. We adopted the original parameters used in the LR model
(Table 2). By varying In(t) and rIP3, two curves (Fig. 2) identify three
separate zones where three different Iastro(t) behaviors are defined
(Fig. 3).

The two threshold curves are identified using a fitting proce-
dure based on Least-Mean-Square Algorithm (LMS Algorithm) as
follows:
Ith1 = z1 · n1

√
rIP3 − p1

Ith2 = z2 · n2
√
rIP3 − p2.

(12)

The fitting parameters are reported in Table 3.
In Zone 0 (Fig. 3(a)), when the neuron is stimulated the con-

centration of IP3 is not large enough to induce both calcium oscil-
lations and Iastro(t) values. In Zone 1 (Fig. 3(b)), the concentration
of IP3 induces periodic waveforms both for calcium and Iastro(t).
In this case, Iastro(t) consists of a rectified sinusoidal wave, i.e. the
negative part of thewave is chopped. In addition, there is a variable
delay between the start of the input current and the Iastro(t) firing.
In Zone 2 (Fig. 3(c)), both calcium curve and Iastro(t) exhibit un-
derdamped second order system-like behaviors, i.e. an overshoot
and decaying oscillations approaching the final value. Also in this
case, a variable delay between the start of the input current and
the Iastro(t) firing is induced. Reporting Iastro(t) values versus rIP3
for different In(t) input pre-synaptic currents (Fig. 4), we observe
how In(t) controls the Iastro(t) flow likewise in a transistor the col-
lector–emitter current can be viewed as being controlled by the
base–emitter current.

Borrowing this concept, we can write Iastro in relation to the
transfer function of the tripartite synapse, hsyn:

Iastro(t) = In(t) · hsyn(t). (13)
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Fig. 3. Three Iastro(t) behaviors with In(t) and rIP3 in Zone 0, Zone 1 and Zone 2.
Fig. 4. rIP3 − Iastro characteristics for various values of In .

In order to assess hsyn(t), a fitting procedure for Iastro(t) time
course data obtained by Nadkarni and Jung and LR equations was
carried out. The most suitable equations were the following:
hsyn(t) =


0 if In(t) ≤ Ith1
Θ(t − D1) · A1 · sin(H) if Ith1 < In(t) ≤ Ith2

Θ(t − D2) ·
I∗astro + A2 · e−

t
τ · sin(2π f · t)
In

if In(t) > Ith2

(14)

where time t is expressed in milliseconds and Θ is the Heaviside
function.

In Zone 1, we calculated the following fitting relations:
A1 =

k3(In − Ith1)
k4

In
k3=a00 + a01rIP3 + a02r2IP3 + a03r3IP3 + a04r4IP3
k4 = a10 + a11rIP3 + a12r2IP3 + a13r3IP3 + a14r4IP3
D1 = a20 + a21A1 + a22A2

1 + a23A3
1 + a24A4

1.

(15)

The function H is the following triangular periodic waveform:

H =

 π

L · T
· t if t ≤ T1

0 if t > T2
(16)

where the triangular waveform period is T = T1 + T2 and:
T = a30 + a31A1 + a32A2

1
L = a40 + a41A1 + a42A2

1.
(17)
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a b

c d

Fig. 5. Comparison between TLM (dotted line) and GSM (continuous line) in case of dc-current with (a) In = 200, rIP3 = 0.4, (b) In = 600, rIP3 = 0.2, (c) In = 900, rIP3 = 0.4,
(d) In = 900, rIP3 = 0.7.
Table 4
Other fitting parameters.

axy 0 1 2 3 4

0 20.79 −105.7 257.04 −248.63 82.97
1 −0.20 1.94 −3.59 2.07 0
2 −2115.30 16048.00 −3054.50 257.21 −8.56
3 2531.30 2502.60 −148.85 0 0
4 1.33 −0.28 0.01 0 0
5 3.48 33.48 −51.25 26.08 0
6 5.09× 10−4 1.18× 10−3 0 0 0
7 45736.00 −2853.00 0 0 0
8 7.23 −0.51 0 0 0
9 6.98× 10−3 8.38× 10−3 0 0 0

10 1460.80 −234.40 9.43 0 0

In Zone 2, we calculated the following fitting relations:
D2 = a70 + a71I∗astro
A2 = a80 + a81I∗astro
f = a90 + a91I∗astro
τ = a100 + a101I∗astro + a102I∗2astro

(18)

where:
I∗astro = k5 + k6In
k5=a50 + a51rIP3 + a52r2IP3 + a53r3IP3 + a54r4IP3
k6=a60 + a61rIP3 + a62r2IP3 + a63r3IP3 + a64r4IP3.

(19)

The fitting parameters are reported in Table 4.
Since several variables, e.g. I∗astro and A1, are function of the

time-dependent In(t), a re-calculation of the model parameters
is required for each millisecond of simulation. Here, we report
on results on modeling the simplest possible neural–glial circuit,
Table 5
Comparison between the two simulated dressed neuron with dc-current as input.

Zone (pA) rIP30.2 rIP30.3 rIP30.4 rIP30.5 rIP30.6 rIP30.7 rIP30.8

In = 100 0 0 0 0 0 0 1**

In = 200 0 1* 1* 1** 1** 1** 2**

In = 300 0 1** 1** 1** 2** 2** 2**

In = 400 0 1** 1** 2** 2** 2** 2**

In = 500 1** 1** 2** 2** 2** 2** 2**

In = 600 1** 1** 2** 2** 2** 2** 2**

In = 700 1* 2** 2** 2** 2** 2** 2**

In = 800 1** 2** 2** 2** 2** 2** 2**

In = 900 1** 2** 2** 2** 2** 2** 2**

In = 1000 2** 2** 2** 2** 2** 2** 2**

In = 1100 2** 2** 2** 2** 2** 2** 2**

In = 1200 2** 2** 2** 2** 2** 2** 2**

* p < 0.005.
** p < 0.0001.

i.e. a single neuron, stimulated by a dc-current and ac-current,
coupled to an astrocyte. Two dressed neurons were implemented.
In the former, the Gold Standard Model (GSM), the RS neuron was
modeled by the Izhikevich formulation and the neuron–astrocyte
interactions by Nadkarni and Jung and the LR expressions. In the
latter, the proposed Transistor-Like Model (TLM), the neuron was
modeled by the Izhikevich formulation and the neuron–astrocyte
interactions by our transistor-like relationships. We tested both
the dressedneurons by injecting input currents, In(t), to the neuron
in the range 100–1200 pA for 100 s with 1 ms of time resolution.

In the Table 5 results from GSM and TLM simulations by using
dc-current are showed; for each row and column the zone inwhich
different Iastro(t) behaviors were found is reported. The p-value
calculation was performed by means of the Pearson correlation
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Table 6
Comparison between the two simulated dressed neuron with ac-current as input.

Zone rIP30.2 rIP30.3 rIP30.4 rIP30.5 rIP30.6 rIP30.7 rIP30.8

M = 100 pA, f0 = 0.1 Hz 0 0 0 0 0 0 NaN
M = 200 pA, f0 = 0.1 Hz 0 NaN 1* 1** NaN 1** 1**

M = 300 pA, f0 = 0.1 Hz 0 1* NaN 1** 1** 2** 2**

M = 400 pA, f0 = 0.1 Hz 1** 1** 1** 1** 2** 2** 2**

M = 500 pA, f0 = 0.1 Hz 1** 1* 1** 2** 2** 2** 2**

M = 600 pA, f0 = 0.1 Hz 1* NaN 2** 2** 2** 2** 2**

M = 700 pA, f0 = 0.1 Hz 1** 1** 2** 2** 2** 2** 2**

M = 800 pA, f0 = 0.1 Hz 1** 2** 2** 2** 2** 2** 2**

M = 900 pA, f0 = 0.1 Hz 1* 2** 2** 2** 2** 2** 2**

M = 1000 pA, f0 = 0.1 Hz 2** 2** 2** 2** 2** 2** 2**

M = 1100 pA, f0 = 0.1 Hz 2** 2** 2** 2** 2** 2** 2**

M = 1200 pA, f0 = 0.1 Hz 2** 2** 2** 2** 2** 2** 2**

* p < 0.005.
** p < 0.0001.
a

c d

b

Fig. 6. Comparison between TLM (dotted line) and GSM (continuous line) in case of ac-current with (a) M = 200, rIP3 = 0.6, (b) M = 500, rIP3 = 0.3, (c)
M = 1000, rIP3 = 0.3, (d)M = 700, rIP3 = 0.4.
coefficient. Moreover, results from GSM and TLM simulations by
using ac-current were also calculated (Table 6). We chose a time
variant signal having sinusoidal shape as following:

In(t) = M +
M
4

sin(2π fot). (20)

According to dc-current findings, the output of the considered
models show good statistical significance as well. Some cases,
labeled as NaN , presented different behavior between GSM and
TLM output. The simulation results regarding the transistor-like
model are in agreement with the ones obtained by the Nadkarni
and Jung and the LR expressions. Examples of the two dressed
neurons model output having different statistical significance are
shown in Figs. 5 and 6.
4. Conclusions

In this article, we described the dressed neuron signaling
through a nonlinear transistor-like transfer function. We derived
the astrocytic current in function of both the pre-synaptic neuron
current and the rIP3 of the astrocyte starting from computational
data obtained implementing existing biophysical neuron–glia
models (LR model). This work represents a computationally
efficient model describing the synapse and astrocyte couplings.
Through themodel here proposed, indeed, it is possible to simulate
real-time spiking artificial neuron–glia networks realizing the
mechanism which seems to be a necessary part of the regulation
of spiking activities. We demonstrated that this model is suitable
to simulate the neuron–astrocyte signaling phenomena.
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