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Abstract

An impedentiometric electronic tongue based on the combination of a composite sensor array and chemometric techniques aimed at the
discrimination of soluble compounds able to elicit different gustative perceptions is presented. A composite array consisting of chemo-sensitive
layers based on carbon nanotubes or carbon black dispersed in polymeric matrices and doped polythiophenes was used. The electrical impedance
of the sensor array was measured at a frequency of 150 Hz by means of an impedance meter. The experimental set-up was designed in order to
allow the automatic selection of a test solution and dipping of the sensor array following a dedicated measurement protocol. Measurements were
carried out on 15 different solutions eliciting 5 different tastes (sodium chloride, citric acid, glucose, glutamic acid and sodium dehydrocholate for
salty, sour, sweet, umami and bitter, respectively) at 3 concentration levels comprising the human perceptive range. In order to avoid over-fitting,
more than 100 repetitions for each sample were carried in a 4-month period. Principal component analysis (PCA) was used to detect and remove

outliers. Classification was performed by linear discriminant analysis (LDA). A fairly good degree of discrimination was obtained.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The main interest in the development of the so-called
electronic noses (e-nose) and tongues (e-tongue) (Lavigne et
al., 1998; Pearce et al., 2002) comes from the request of low
cost, high throughput, versatile pseudo-analytical instruments
capable of replacing expensive and inefficient human panels
in the assessment of products (food, beverage, packaging, etc.)
(Ampuero and Bosset, 2003), as well as to lower the cost of
selected urine and blood tests or to serve as screening for medical
diagnosis (Logrieco et al., 2005; Machado et al., 2005; Shykhon
et al.,, 2004), and to monitor the quality of the environment
(Persaud et al., 2005). So far, much more attention has been paid
to the development of e-noses compared to e-tongues. From a
biological point of view, important synergies exist among senses
that concur to determine perceptions. Behavioural reactions
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to concordant multisensory cues exhibit lower thresholds than
their unisensory counterparts, while cross-modal cues that
are significantly discordant can have the opposite effect and
depress responses (Calvert, 2000). For example, the pairing
of a sub-threshold odour and a sub-threshold taste results
in a decrease of the odour threshold (Dalton et al., 2000).
From an instrumental point of view, it would be interesting to
combine an e-nose and an e-tongue to obtain complementary
information on the same sample by means of a hybrid array
(Wide et al., 1998). Since most e-nose sensors are based on
variations in electrical resistance when exposed to odours, the
impedance measurement represents the easiest way to use the
same electronic front-end for both gas and liquid sensors. This
would mean, in perspective, the possibility to develop really low
cost instruments, which is a must to make this technology exit
from laboratories. But experience has taught that great attention
has to be paid, when dealing with e-noses and e-tongue to avoid
inappropriate generalization of results which are only valid in
a limited region of the experimental domain. Goodner et al.
(2001) illustrated the risk of data over-fitting, which can lead


mailto:giovanni.pioggia@ing.unipi.it
dx.doi.org/10.1016/j.bios.2006.10.025

G. Pioggia et al. / Biosensors and Bioelectronics 22 (2007) 2624-2628 2625

to counterfeit classifications. According to these authors the
ratio between samples and variables should be greater than
six in order to obtain reliable results. Moreover, in order to
guarantee measurement accuracy, reliability and repeatability,
aside from considering the volatile nature of the substances, the
sampling system must control and optimise all factors capable of
influencing the generation of sensor transduction signals, while
the electronic apparatus must be fast and accurate.

In this paper we address the development of an impe-
dentiometric electronic tongue based on the combination of
a composite sensor array and chemometric techniques, i.e.
principal component analysis (PCA) and linear discriminant
analysis (LDA) (Brereton, 2003), in order to verify its ability in
distinguishing among soluble compounds. Five different sensors
were fabricated and characterized in Part I (Pioggia et al., 2007).
They comprise three different recognition mechanisms: a carbon
nanotube (CNTs) loaded hydrogel, two commercial polymers
loaded with carbon black and two conducting polymers. The sen-
sor responses depend on a complex interplay between solution
permeation in the matrix, electromechanical response times and
ion affinity/mobility. Each sensor type has a distinct recognition
mechanism, with a different dynamic response, and it is this var-
ied array which contributes to the overall discrimination power
of the e-tongue. The system was tested with five compounds with
different chemical characteristics (a carbohydrate, two salts, a
weak organic acid and an amino acid) able to elicit different
kinds of gustative perceptions (glucose, sodium dehydrocholate,
sodium chloride, citric acid and glutamic acid) representing the
five classic tastes. Over 100 measurements were carried out over
a 4-month period at three concentration levels of each solution
comprising the human sensitivity range to evaluate the system
discrimination capability.

2. Experimental methods

The current research in electronic tongues is based mainly on
electrochemical measurements, with the main focus being on the
development of novel sensors, such as membranes and electrode
coatings. Indeed, the use of impedance measurement represents
a novel approach for the realisation of an electronic tongue.
This approach is justified by the affinity with the measurement
of resistance variations which is the most commonly used
method for electronic noses. Our objective is to merge both
olfactive and gustative sensing into a human-like taste and smell
perception system; the impedance sensing method simplifies
the integration process. In particular, the use of three different

Table 1
Taste solutions, concentrations and labels

sensing layers was investigated. The first sensing layer consisted
of a hydrophilic hydrogel consisted of a blend of poly(vinyl-
alcohol) (PVA) and polyallylamine (PAA) loaded with CNTs.
The second sensing layer was realised from a matrix of polylactic
acid (PLA) loaded with carbon black and it is based on the
method described by Lonergan et al. (1996). In the third
case, a sensing layer consisting of poly(alkoxy-bithiophenes)
previously used to detect organic vapours (Gallazzi et al., 2003),
was adopted. Preparation and characterization of the sensing
layers is reported in Part I (Pioggia et al., 2007). The composite
sensor array capability of discriminating different solutions in a
concentration range typical of human foods is reported here.

2.1. Measurement protocol

The electrical impedance of the sensor array was monitored at
afrequency of 150 Hz. The data acquisition system is reported in
Part I Pioggia et al. (2007). The following measurement protocol
was adopted:

(a) sensors in air, start of data acquisition;
(b) sensors dipped in distilled water;

(c) sensors in air;

(d) sensors in solution 1;

(e) new cycles (a)—(d) for the other solutions;
(f) sensors in air, stop acquisition.

At the end of this run of measurements, 36 values of both
modulus and phase were acquired for each solution relevant to
air (16 data), distilled water (10 data) and solution (10 data). The
classification capability of the device was tested on 15 solutions
of the 5 compounds at 3 concentration levels (Table 1) chosen
S0 as to cover the human range of sensitivities.

To avoid the over-fitting of the classification process
(Goodner et al., 2001), a large measurement campaign was
adopted. A 106 repetitions for each solution (a total of 1590 mea-
surements) were organised in six different campaigns carried out
over 4 months and measured following a random order (Table
2). This rigorous testing also demonstrated the reproducibility
of the sensor responses and their stability over time.

2.2. Data analysis

The data were collected in a database (MySQL), then suitable
queries allowed the extraction of the steady state impedances of
sensors which were analysed by using multivariate techniques.

Taste Compound Concentration (M)

Low Middle High
Acid Citric acid 0.005 CAL 0.05 CAM 0.5 CAH
Bitter Sodium dehydrocholate 0.0001 SDL 0.001 SDM 0.01 SDH
Sweet Glucose 0.001 GL 0.01 GM 0.1 GH
Salty Sodium chloride 0.001 SCL 0.01 SCM 0.1 SCH
Umami Glutamic acid 0.001 GAL 0.01 GAM 0.06 GAH
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Table 2
Experimental sessions

Session Number of Total number of
B repetitions measurements

Number Starting day

I 1 30 450

I 15 30 450

I 30 30 450

v 60 6 90

\% 91 6 90

VI 120 5 75

Before applying any classification technique, the identification
and the removal of outliers (samples significantly different from
analogues belonging to the same population) was accomplished.
As samples of each category were obtained in our case by
replicates of the same measurement procedure, a multivariate
normal distribution around an ideal category representative
might be expected, deviations from that point being due to
experimental errors. Large deviations may be generated by
random errors either in the sample preparation and measurement
or in the data acquisition and treatment, so that it is not
possible to consider the resulting object a typical sample of
that category. Principal component analysis (PCA) (Brereton,
2003) was used to display data and detect outliers, by using the
Q and T? diagnostics. Samples identified as outliers for at least
one of these statistics with p < 0.001 (more than three standard
deviations from the mean value of any category) were removed.

Classification was performed by linear discriminant analysis
(LDA) (Brereton, 2003). Two different schemes of cross-
validation were applied. The first one was the standard Venetian
blind with five deletion groups, in which the first deletion group
is formed by samples 1, 6, 11, ..., the second deletion group
by samples 2, 7, 12, ..., and so on. This procedure does not
test the robustness of the model versus the sensor drift, since
samples measured the same day are spread throughout all the
deletion groups. To overcome the problem and get results as
close as possible to a real prediction, a second approach (leave-
1-day-out) was applied. Six deletion groups, each composed
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Fig. 1. PCA score plot of the SCH measurements.

of all the samples measured on the same day, were created. In
order to compensate for the different sample size in the different
days, the predictive ability of each category was computed as
the average of the predictive abilities of the same categories in
the 6 days.

3. Results and discussion

For each of the 15 categories (5 tastes and 3 different
concentrations), a dataset containing the extracted steady-state
values of the impedance magnitude and phase, was obtained and
a PCA was performed to detect and remove outliers according to
the procedure previously outlined. As an example, Fig. 1 shows
the score plot of the SCH measurements (see Table 1); samples
obtained in the first measurement session (samples 1-30) are
clearly different, and therefore they are removed.

The distribution of the samples according to the category and
the measurement session after the elimination of the outliers is
reported in Table 3.

Table 3
Measurement session after the elimination of the outliers

1 I 1 v \Y% VI Total
1 Citric acid low (CAL) 28 30 30 6 1 5 100
2 Citric acid middle (CAM) 29 30 30 6 6 5 106
3 Citric acid high (CAH) 22 30 30 6 6 5 99
4 Sodium dehydrocholate low (SDL) 29 30 30 6 6 4 105
5 Sodium dehydrocholate middle (SDM) 27 30 26 6 6 5 100
6 Sodium dehydrocholate high (SDH) 30 30 30 6 6 5 107
7 Glucose low (GL) 30 30 30 5 0 0 95
30 Glucose middle (GM) 0 30 30 6 9 0 75
9 Glucose high (GH) 30 30 30 6 6 5 107
10 Sodium chloride low (SCL) 28 30 30 6 6 5 105
11 Sodium chloride middle (SCM) 30 30 30 6 6 5 107
12 Sodium chloride high (SCH) 0 30 30 6 6 5 77
13 Glutamic acid low (GAL) 30 30 24 6 6 5 101
14 Glutamic acid middle (GAM) 28 30 29 6 6 3 102
15 Glutamic acid high (GAH) 30 30 30 6 6 0 102
Number of retained samples 371 450 439 89 82 57
Retained samples (%) 82.4 100 97.6 98.9 91.1 76.0
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Table 4

Confusion matrix after the Venetian blind cross-validation

CAL CAM CAH SDL SDM SDH GL GM GH SCL SCM SCH GAL GAM GAH Correct
predictions (%)
CAL 73 0 0 0 0 20 0 0 0 0 0 0 0 0 7 73.0
CAM 0 101 0 0 0 0 0 0 0 0 5 0 0 0 0 95.3
CAH O 1 98 0 0 0 0 0 0 0 0 0 0 0 0 99.0
SDL 0 0 0 57 4 0 36 4 4 0 0 0 0 0 0 54.3
SDM 0 0 0 0 60 0 0 12 15 1 0 0 12 0 0 60.0
SDH 39 0 0 0 0 56 0 0 0 0 0 0 0 0 12 52.3
GL 0 0 0 25 0 0 67 1 2 0 0 0 0 0 0 70.5
GM 0 0 0 20 5 0 4 12 13 1 0 0 15 3 2 16.0
GH 0 0 0 9 10 0 10 14 57 2 0 0 5 0 0 53.3
SCL 0 0 0 0 0 0 0 0 0 87 0 0 0 16 2 82.9
SCM 1 0 0 0 0 2 0 0 0 0 104 0 0 0 0 97.2
SCH 0 0 0 0 0 0 0 0 0 0 0 77 0 0 0 100.0
GAL 0 0 0 0 26 0 0 9 1 1 0 0 62 2 0 61.4
GAM 0 0 0 0 0 0 0 0 0 21 0 0 0 80 1 78.4
GAH 9 0 0 0 0 4 0 0 0 0 0 0 0 0 89 87.3
Mean O 0 0 0 0 0 0 0 0 0 0 0 0 0 72.1
Several samples of the first session had to be removed (e.g. Table 5

all the GM and SCH), as well samples of the last session, which
showed a high percentage of outliers. In the end, 1488 samples
out of 1605 were retained (92.7%).

As regards LDA, at first, the Venetian blind cross-validation
approach was applied, which can produce overoptimistic results
in case of time drift of data. The confusion matrix (Table 4),
in which the ijth element represents the number of samples
from class i that were classified as class j, allows a complete
evaluation of the performance of the model. Correct predictions
are represented by the elements ii on the principal diagonal; the
average percentage is 72.1%.

A close analysis of the data reveals that sodium chloride
is the most easily recognized compound, even at the lowest
concentration; the system gives good results with citric acid,
especially at the highest concentrations, while the performance
with glutamic acid improves with the increase of concentration,
though extremely high values of recognition are never reached.
Very poor performance is obtained with sodium dehydrocholate
and glucose, even in the case of the highest concentrations.
Furthermore, it can be seen that often the wrong predictions
assign the sample to totally different compounds.

If the system had to be used for a real application, a more
realistic assessment of the performances would be obtained by
the leave-1-day-out approach, which does not compensate for
the time drift. Results obtained with this approach are reported
in Table 5.

The average percentage of correct predictions is 53.4%,
as expected lower than the value obtained with the Venetian
blind approach. These results confirm the previous findings,
with very good predictions for sodium chloride (70.0% of
correct predictions even at low concentration) and citric acid
(98.5% of correct predictions at the highest concentration),
acceptable results for sodium glutamate (58.0% at the highest
concentration) and poor results for bitter and glucose. It is also
interesting to study the performance of the single sensors and
variables, in order to try to obtain the same (or better) predictive
ability with a simpler instrument. Variables 2, 4, 6 and 7 (1M,

Diagonal of the confusion matrix after the leave-1-day-out validation

Correct predictions (%)

CAL 26.7
CAM 90.4
CAH 98.5
SDL 45.1
SDM 20.6
SDH 42.8
GL 51.7
GM 0.8
GH 25

SCL 70

SCM 88.9
SCH 95.3
GAL 37.5
GAM 49.5
GAH 58

Mean 53.4

3M, IF and 2F) produce 66.7% correct predictions in cross-
validation with the Venetian blind.

While there are good reasons to criticize the concept of the
five basic tastes (Delviche, 1996), and we are still far from being
able to instrumentally reproduce human perception, the results
demonstrate the feasibility of using a composite array along with
a rigorous experimental testing scheme to discriminate simple
soluble compounds.

4. Conclusion

In this work an impedentiometric electronic tongue based on
a composite array has been used to classify different solutions
eliciting five basic tastes (sodium chloride, citric acid, glucose,
glutamic acid and sodium dehydrocholate for salty, sour, sweet,
umami and bitter, respectively) at three concentration levels
comprising the human perceptive range. Novel aspects of
this work are the use of a composite sensor array, i.e. an
array consisting different materials characterized by different
response mechanisms, and the acquisition of the electrical
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impedances at a frequency of 150 Hz as transduction signals. To
eliminate artifacts due to over-fitting of data, an intensive number
of test over a long time period were performed, using random
measurement campaigns. Solution identification was performed
using PCA for detecting and removing outliers and LDA for
pattern classification. An average recognition percentage of
72.1% was obtained. The compounds best identified were salty,
acid and umami, demonstrating the feasibility of using electrical
impedance to monitor the response of a sensor array in liquids,
whereas bitter and sweet gave rather poor results. The authors are
confident that solution discrimination can be improved through
the use of a larger and more varied array and more sophisticated
data processing methods.
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