
19

A Biologically Based Framework for Distributed
Sensory Fusion and Data Processing

Ferro M. and Pioggia G.
Interdepartmental Research Center “E. Piaggio”

Faculty of Engineering, University of Pisa,
Italy

1. Introduction
The increasing complexity of the artificial implementations of biological systems poses
issues in sensory feature extraction and fusion, drift compensation and pattern recognition,
especially when high reliability is required [1, 2, 3, 4]. In particular, in order to achieve
effective results, the pattern recognition system must be carefully designed. At present,
these instruments often fail to give the expected results and research is under development.
This happens for a series of concomitant causes, ranging from the measurements, to the
limits relevant to instability and non-reproducibility of most existing sensors, up to the
inappropriate use of the pattern recognition scheme, i.e. the perception of an odour/taste
and its classification through the comparison with similar stimuli perceived in the past.
Many techniques are used for this purpose, but recently, the processing architectures are
often performed by models inspired by biology, such as genetic algorithms and Artificial
Neural Networks (ANN) [4, 5, 6]. Enhancing the reliability of high-level processing systems
represents the next critical step. Such architectures require high-efficiency interconnection
and co-operation of several heterogeneous modules, i.e. control, data acquisition, data
filtering, feature selection and pattern analysis. Heterogeneous techniques derived from
chemometrics, neural networks, fuzzy-rules used to implement such tasks may introduce
module interconnection and cooperation issues [7, 8]. It may not be reliable to establish a
multi-channel communication among common artificial neural networks tools, feature
extraction and selection processes, and acquisition and control systems. Moreover, high
level interfaces often do not allow adapting of the architecture and/or the processes
topology at run-time. As a result complex processing methods have to be designed. A real-
time approach for data analysis requires the realization of interconnected modules which
are capable to establish an efficient communication channel. In this way the application
should be able to control all modules of the elaboration chain, including analysis protocol
management and sensory and actuating interfaces.
The body is felt as a unity, with different qualities at different times and the brain
mechanism that underlies the experience also comprises a unified system that acts as a
whole and produces a neurosignature pattern of a whole body [9]. A distributed processing
throughout many areas of the brain, comprises a widespread network of neurons that
generates patterns, processes information that flows through it, and ultimately produces the

 Sensor and Data Fusion

338

pattern that is felt as a whole body possessing a sense of self. The stream of neurosignature
output with constantly varying patterns riding on the main signature pattern produces the
feelings of the body-self with constantly changing perceptual and emotional qualities. The
new breakthroughs made in the past few decades in material science in order to develop
intelligent sensing materials built in compliance, non-linearity and softness allow to mimic
the multi-component and bi-phasic nature of biological matter. Moreover, intelligent
algorithms allow the transduction signals to be effectively reconstructed. In order to provide
an artificial neural network architecture with the capabilities of processing, coding and
fusing in real-time the distributed information continuously flowing from an artificial
distributed sensing network, in this chapter a mammalian cortex inspired model is
described.
According to the biological sensory systems, where environmental stimuli are deconstructed
and then reconstructed in the brain to create perceptions [10], the presented architecture
may help dealing with a dynamic and efficient management of multi-transducer data
processing techniques, as well as serving as an initial step in the reconstruction of a fused
image from its deconstructed features. The raw signals obtained from artificial
implementations of biological systems can be preprocessed in order to extract relevant
features. Features vectors constitute the dataset for sensory fusion and the pattern
recognition processes. Fusion and processing are achieved by the homogeneous software
frameworkwhere, in order to gain short-term priming in co-operation with other modules,
artificial neural models and architectures inspired to the mammalian cortex [11, 12, 13, 14]
are implemented. Artificial neuron models with high computational efficiency and
biological accuracy are adopted to obtain a learning strategy able to avoid catastrophic
interference [15, 16, 17] and to enable a selection of neuronal groups [18]. To take into
account this theory the time variable in the learning task is used, so that neural groups may
raise from a selection process.
The framework is able to manage at the same time transducer devices and data processing.
Synchronization among modules and data flow is managed by the framework offering
remarkable advantages in simulation of heterogeneous complex dynamic processes. Specific
control processes, pattern recognition algorithms, sensory and actuating interfaces may be
created inheriting from the framework base structures. The architecture is library-oriented
rather than application-oriented and starting from the base models available in the
framework core dedicated models for processes, maps and connections may be derived.
Such a strategy permits the realisation of a user-defined environment able to automate the
elaboration of cooperating processes. Etherogenous processes will be able to communicate
each other inside the framework as specified by the user. The framework architecture has
been designed as a hierarchical structure whose root is a manager module. It is realised as a
high-level container of generic modules and it represents the environment in which process
modules and I/O filtering interfaces are placed. Modules may be grouped recursively in
order to share common properties and functionalities of entity modules belonging to the
same type. Communication channels are realised as connections through specific projection
types that specify the connection topology. Connections are delegated to dispatch
synchronization information and user-defined data. The filtering interface modules are able
to drive the transducer hardware and to dispatch information to process modules. All base
modules manage dynamic structures and are designed to maintain data consistency while
the environment state may change. High level processes such as control processes and

A Biologically Based Framework for Distributed Sensory Fusion and Data Processing

339

pattern recognition algorithms are defined as application processes inside the framework.
Such processes inherit properties and functionalities from the framework base structures,
taking advantage of automation capabilities provided by the framework core. The
framework allows to create a communication language between the framework core and the
hardware architecture. This guarantees an increased flexibility thanks to the presence of
interfaces performing the function of interpreters for the specific hardware and filters which
specify the way the framework core senses and communicates the information.

2. A framework solution for high complex tasks
From a general point of view, a complex system consists of different modules cooperating in
order to perform data acquisition from multiple sensors, data analysis through several
techniques and data redirection to the actuator systems. The architecture here proposed
addresses three main issues:
• acquisition from sensors: a protocol interface will be available to dispatch data coming

from input systems; for each hardware sensory system the user will realize the software
driver to filter the signals and to dispatch data to the framework core via the framework
I/O interface.

• data processing: inside the framework core all the processes will be specified by the
user; for each process the user will specify the algorithms, the connection topology
between other processes and, optionally, the geometrical structure.

• actuator driving: a protocol interface will be available to dispatch data from the
framework core; for each hardware actuating system the user will realize the software
driver to filter the data and to dispatch the signals from the framework I/O interface to
the actuating systems.

The design of a versatile instrument for data management and elaboration should be
suitable for those systems which are equipped with distributed transducer devices, where a
particular attention should be paid to inter-process communication. Applications of such
instrument space from the simple elaboration of signals supplied by sensory and actuating
networks, to pattern analysis and recognition techniques. Design specification included the
ability to let the system to be able to operate in real-time. The realization of a framework
able to perform a parallel device management should give to all the modules the ability to
cooperate and the possibility to share data coming from sensory systems and directed to the
actuating systems. The possibility to operate in real time imposes critical efficiency
requirements to each single module. The framework design pays attention to the
management and the synchronization of data and processes. Control modules and pattern
recognition algorithms are defined as application processes inside the framework. The
framework is realised as a software library in order to exploit the potentials of the
computational algorithms and to enhance the performances of the processing techniques
based on artificial neural networks. The architecture is able to manage at the same time
transducer devices and data processing. Synchronization among modules and data flow is
managed by the framework offering remarkable advantages in simulation of heterogeneous
complex dynamic processes. Specific control processes, pattern recognition algorithms,
sensory and actuating interfaces may be created inheriting from the framework base
structures.
In order to exploit the potentials of the computational algorithms and to enhance the
performances of control processing techniques, the framework is realised as a C++ software

 Sensor and Data Fusion

340

library. In this way the library architecture is a re-programmable instrument available to the
user to develop specific applications. It has been designed to be portable to any software
platform in order to gain abstraction from the operating system. The framework however
needs a low-level software layer to perform kernel re-building and low-level system calls.
An Intel-based personal computer is actually being used and a commercial operative system
grants the low-level communication.

2.1 I/O device communication
The framework core and application processes are interfaced with the outside world
through the framework I/O interface. This layer has been developed in order to act as a
buffer for the flow of information coming in from the sensors and out to the actuators. With
this strategy sensory fusion is gained enabling an abstraction with respect to the specific
technology of the transducers used. Signals coming from the sensors are gathered in parallel
and are encoded according to a standard protocol. The encoded information is received by a
specific filter for each sensor, which then sorts them to framework I/O interface. For each
actuating system a mirror image architecture has been reproduced with respect to the one
described for the sensors. The information available in the framework I/O interface is
encoded by a filter using the same standard protocol. A specific interface for each actuator
pilots its specific hardware system. This architecture allows setting up a communication
language between the framework core and sensory and actuating devices. This guarantees
an increased flexibility thanks to the presence of interfaces performing the function of
interpreters for the specific hardware and filters which specify the way the framework core
senses and communicates the information. Fig. 2.1 shows the flow of information to and
from the framework core. Communication channels are established as connections between
application processes so that framework is able to perform a low-level inter-process
communication. The domain of data flowing through connections and the flow chart of the
application processes are user-defined.

2.2 Parallel distributed processing
Synchronization among modules and data flow is managed by the framework offering
remarkable advantages in simulation of heterogeneous complex dynamic processes. Specific
control processes, pattern recognition algorithms, sensory and actuating interfaces may be
created inheriting from the framework base structures, taking advantage of process
automation provided by the framework core. A spatial definition of the entities involved in
the framework can be supplied, making this information available to the control system for
subsequent processing. To guarantee the execution of real-time applications an inner
synchronization signal is provided from the framework core to the processes and to the
framework I/O interface, enabling to gain time-space correlation. A dynamic geometrical
representation can be visualised by a high efficiency 3D graphic interface, giving a support
during experimental setup debug. Processes and connections are managed at run time and
they can be manipulated under request. The presence of dynamic structures implies a
configurable resource management, so the framework offers an optimised interface for
enumeration and direct access requests.

2.3 Control and processing modules
The framework architecture has been designed as a hierarchical structure whose root is a
manager module (3DWorld). It is realised as an high-level container of generic modules

A Biologically Based Framework for Distributed Sensory Fusion and Data Processing

341

Fig. 2.1. Architecture of the framework for the parallel management of multiple elaboration
processes. The transducer devices are synchronized and controlled through an appropriate
I/O interface

representing the environment in which process modules (W) and I/O filtering interfaces are
placed (Drivers). All these modules inherit low-level properties and functionalities from a
base module (3DObject) realised as an element able to populate the process environment.
Virtual and pure-virtual functionality strategies have been applied to this base module in
order to obtain an abstraction with respect to the generic application task. In this way the
core is able to process user-defined functionalities without being reprogrammed. Moreover,
modules may be grouped recursively (WGroup) in order to share common properties and
functionalities of entity modules belonging to the same type. Communication channels are
realised as connections (WConnection) through specific projection types that specify the
connection topology. Connections are delegated to dispatch synchronization information
and user-defined data (WConnectionSpec). The filtering interface modules are able to drive
the transducer hardware and to dispatch information to process modules. All base modules
manage dynamic structures and they are designed to maintain data consistency while the
environment state may change. This behaviour permits the execution of dynamic and real-
time parallel distributed processing while synchronization and data flowing are managed

 Sensor and Data Fusion

342

by the environment. All modules are realized as running processes while their control and
synchronization is managed by the framework. The hierarchical and collaboration chart of
the base structures is shown in Fig. 2.2.

Fig. 2.2. Inheritance and collaboration diagram of the main modules of the framework core:
I/O interfaces, communication channels, processes

3. Framework overview
Architecture implementation details will be showed in this section making use of the
Unified Modelling Language (UML) representation. In Fig. 3.1 the legend is showed.

Fig. 3.1. Graph relationship legend

The boxes in the above graph have the following meaning:
• A filled black box represents the struct or class for which the graph is generated.
• A box with a black border denotes a documented struct or class.
• A box with a grey border denotes an undocumented struct or class.
• A box with a red border denotes a documented struct or class for which not all

inheritance/containment relations are shown. A graph is truncated if it does not fit
within the specified boundaries.

The arrows have the following meaning:
• A dark blue arrow is used to visualize a public inheritance relation between two classes.
• A dark green arrow is used for protected inheritance.
• A dark red arrow is used for private inheritance.

A Biologically Based Framework for Distributed Sensory Fusion and Data Processing

343

• A purple dashed arrow is used if a class is contained or used by another class. The arrow
is labeled with the variable(s) through which the pointed class or struct is accessible.

• A yellow dashed arrow denotes a relation between a template instance and the
template class it was instantiated from. The arrow is labeled with the template
parameters of the instance.

The implementation will be described using technical object-oriented language terms. To
avoid confusion main terms are resumed:
• an object is an synonymous word for a class or a structure and it defines a new data type.
• an instance of an object is a variable declared as object type.
• an object's property is called member.
• an object's function is called method.
• a derived object is a child of another object, and it inherits properties and functionalities

from his father object, which is called base object.
• a private member or method is accessible only inside the object.
• a protected member or method is accessible both from the object and from a derived object.
• a public member or method is always accessible.
• while structures start implicitly with public definitions, classes start implicitly with

private definitions.
• a virtual method defines a function that, if it is overridden in a derived object, cause the

call to derived method even it is called on the base object.
• a pure-virtual method is undefined in the base object and, as a result, the base object can

not be instantiated.
• an abstract object contains only pure-virtual methods.

3.1 Portability
Since the framework library is written using the C++ programming language, the software
portability is guaranteed by the standard ANSI-C/C++ definitions. However the low-level
interfaces depend on the particular libraries of the operative system. For this reason a low-
level layer was defined to include all the dependencies for the specific platform. The low-
level layer (ARI_Macro) has been realised defining a set of operations for run-time memory
management (allocation and deallocation), file I/O interface, log reports and window assert
dialogs. All these operations are implemented as C++ macro and they will be used by the
framework for all the low-level operative system interfacing.
Graphic User Interface (GUI) is not embedded in the framework in order to not slow down
the application efficiency and to let the user to be able to choose his preferred tools. Since
each of the framework objects provides functions to get information about the status and the
output data, the GUI tools are developed as external modules that can be linked to the
architecture. Main graphic output is guaranteed by OpenGL rendering, which libraries are
available for many hardware platforms. If the user choose to use OpenGL support, then he
must link OpenGL libraries to his application. Application GUI is actually supplied for
Microsoft Windows operating system, including useful tools for layered graphs (MGraph)
and OpenGL dialog windows (glCDialog). While data storage is already supplied by the
framework, additional end-user tools are available for file tables (TabData) and database
tables (TabDataConn) supporting MySQL, SQLServer and general ODBC drivers. Since all
these tools are external they not compromise the architecture efficiency, making the user
able to choose his appropriate strategy.

 Sensor and Data Fusion

344

3.2 Containers
Container structures have been developed adopting a template-object strategy. A chunk-
memory-allocation strategy has been applied to dynamic containers in order to obtain a
configurable compromise between flexibility and direct memory access efficiency. Iterators
have been defined for such dynamic structures in order to perform high-efficiency list
browsing. Static arrays are able to perform real-time memory reallocation. Basic containers
are showed in Fig. 3.2.

Fig. 3.2. Basic containers implemented in the framework. A chunk-memory allocation
stategy has been applied to dynamic containers

A Biologically Based Framework for Distributed Sensory Fusion and Data Processing

345

3.3 The base structure: 3DObject
The basic element of the framework is called 3DObject. This is an element able to perform
basic functions which are useful to many of the modules included in the framework.
3DObject properties include a label, a 3D position, a 3D radius and a set of user-defined
flags. The label will be useful for log reports, application debug and for easy high-level
object identification. The default label will be associated with the hexadecimal memory
address of the object, which is unique during the execution of the application. Three-
dimensional position and radius will be useful for graphic rendering under user request.
Such values are initialised with null values, since the rendering functions are optional. Flags
specify the way in which the object manager will process the object (see 3DWorld). By
default no flag is set for a 3DObject.
Several functions has been supplied for this base object in order to guarantee I/O transfers,
3D management and flags maintenance. Since process objects will be derived from 3DObject,
a set of virtual functions has been defined to perform process synchronization and update.
The use of virtual functions guarantees the ability of the object manager to call redefined
functions on derived objects without knowing them. User-defined processes have to follow
the base virtual protocol, redefining the way in which synchronization and update
operations are performed. In Fig. 3.3 the 3DObject architecture is showed.

Fig. 3.3. Architecture of the 3DObject structure. This is the base object used to populate the
process environment managed by the 3DWorld structure

Defined virtual functions are Render, SetInput and Update. Each of these functions will be
called by the object manager only if the appropriate flag is set. Such strategy makes the user

 Sensor and Data Fusion

346

to be able to specify virtual overrides for his specific processes. Render function will specify
the way in which the object will be graphically rendered. OpenGL is the default renderer,
permitting an high efficient three-dimensional output. Graphic rendering is useful for object
status monitoring during application execution and debug. The definition of a rendering
function does not reduce object efficiency since Render virtual function will be called only if
screen repainting is needed and if the rendering flag has been set.
SetInput and Update functions specify the core process algorithms. The first method is
needed to workaround the serial processing of all the objects. In fact the parallel execution of
all the process objects will be serialized by the low-level CPU scheduling. The order of the
execution of each process may compromise the effective result of the process network in the
case of multiple cooperating processes. For this reason the object manager will first call the
SetInput method over all the processes with the intent of buffering the actual output data
over communication channels (see WConnection). After this buffering step, the Update
method will be called over all the objects making use of the buffered connection data instead
of the object actual output data. Such a strategy guarantees the independence from the
process execution order. Default base method just defines the virtual processing and
rendering protocol.
The same virtual strategy has been adopted for buffers and files data storage. A set of virtual
functions has been defined to perform an object independent way for file I/O (ToFile,
FromFile) using platform independent file operations. Such methods use buffer virtual
functions (ToBuffer, FromBuffer, GetBufferLen) which will be specified by the user for each
process. Default implementation of buffer virtual methods just defines the buffering I/O
protocol.

3.4 The object manager: 3DWorld
Synchronization and update of all the running processes is managed by 3DWorld. This
structure is a collection of 3DObject. Elements are organised in a dynamic list where the
access order is often sequential. 3DWorld provides the execution of specific methods for all
the objects added during an initialisation step. Internally 3DWorld manages the reference of
each object and not the object itself. This strategy speeds up the enumeration of the
elements, giving to the user the opportunity to override the manager behaviour and to gain
the direct control of each single element. Elements may be added and removed at run-time
(AddObject, RemoveObject) while the execution of process virtual methods is managed
accordingly to the active flags of each elements (Render, SetInput, Update).

3.5 The base process structure: W
The process base structure inherits properties and functionalities from 3DObject. W is a
generic transferring function, which is able to communicate with structures of the same base
type. Communication channels are established as connections and the domains of input and
output data are defined by the user. For this reason a pure-virtual strategy has been applied
to this structure to take into account a processing method (Process) which is still not defined
at this level. For this reason a W structure can not be instantiated. It only defines the process
standard protocol and provides topology connection methods. Render, SetInput and Update
flags are automatically activated in the initialization step. The architecture of W structure is
shown in Fig. 3.4.

A Biologically Based Framework for Distributed Sensory Fusion and Data Processing

347

Fig. 3.4. Architecture of the W structure. It represents the base process model

W is a template structure where OUTDATA and CONNSPEC types are user-defined. While
OUTDATA represents the output pattern, CONNSPEC contains the specification for each
input connection. The 3DObject virtual method Update is redefined to set the new output
value accordingly to the result of the pure virtual method Process, which will be specified in
derived process structures. Actual process output can be retrieved using GetOutput method.
W provides methods to specify the connection topology of the single process (AddInputFrom,
AddOutputTo) in respect to the other input and output processes. SetInput method is
redefined to perform a scan over all the input connections and to transfer the actual output
value of input process to the connection buffer (see WConnection). For sake of efficiency the
starting point for both input and output connections is stored in each W structure. Since
connections are usually browsed sequentially, enumeration methods are provided to
perform high efficient navigation over input and output connections (First, Next, End). In
derived structures the Process method has to be redefined to perform the core process
algorithm, taking into account the specific data connection and the data output given by
each input process, which are already buffered into the corresponding input connection.
Process method is defined as private function, so it can not be directly called by the user
since it is automatically managed by the framework during the update step. With this
strategy the process, which core is still undefined, is able to manage the unknown
information of the user-defined process.
Buffer I/O operation (GetBufferLen, ToBuffer, FromBuffer) are redefined to provide data storage
for actual process output and for the actual specification values for all the input connections.

 Sensor and Data Fusion

348

3.6 The connection between two processes: WConnection and WConnectionSpec
A connection between two process is realised by the Wconnection template structure. Since
input connections for a given process are embedded inside the process itself, the template
types are the same used for W structure. WConnection stores references of both source and
destination processes. A field of OUTDATA type is stored to perform data buffering. In fact
during the SetInput step on the destination process, the GetOutput method is called over the
input process and the resulting value is stored inside the connection. While the W structure
contains the references of both the first input connection and the first output connection, the
next links to connections are stored into two dynamic lists inside the WConnection structure.
In Fig. 3.5 an example of this strategy is shown.

Fig. 3.5. Connection strategy example. Each process contains the references of both the first
input connection and the first output connection. Each connection contains the references of
both the source and the destination process, plus the references to both the next input
connection and the next ouput connection

Inside the WConnection structure a field of CONNSPEC type is used to store the specific
information needed by the destination process to evaluate the output data given by the
source process. The base class for the CONNSPEC type is the WConnectionSpec structure.
This structure is an abstract class where only a pure virtual method is defined (Init). This
method will be automatically called during the creation of the connection to perform the
initialisation of the CONNSPEC values on the basis of the user-defined parameters. This
structure only defines the connection initialisation protocol and must be redefined in the
derived structures.

3.7 Grouping processes: WGroup and WProjectionSpec
Processes may be grouped into a WGroup structure, which template arguments are the same
of the W structure (OUTDATA, CONNSPEC). Since this structure only contains the
references to several W structure, the user does not lose the control over each single process.
Grouping processes results in a logical managing of several objects, which can be added and

A Biologically Based Framework for Distributed Sensory Fusion and Data Processing

349

removed at run-time (Add, Remove methods). 3DObject is the base class for the WGroup
structure, permitting the redefinition of the virtual functions for flag, synchronization and
I/O mangement over all the grouped entities. WGroup contains its own flags, with the
possibility to propagate flags to each grouped entity (AddFlags, RemFlags, SetFlag, IsSetFlag).
With the same strategy adopted for the 3DWorld structure, WGroup is able to propagate
rendering and synchronization signals over grouped entities according to their active flags.
By default these flags are activated only for the group and they are not propagated to the
sub-entities. Since the WGroup structure has its own geometrical position and volume, a
Dispose function is supplied for geometrically disposing all the grouped entities according to
their volumes. Such information will be automatically taken into account during the
framework rendering processing.
WGroup contains useful methods to create connections both to other groups and to other
single processes. Since these methods (AddInputFrom, AddOutputTo) may involve more than
one entity, connections are realised through projection specifications (WProjectionSpec).
During the projection initialisation step, the framework looks for projection flags in order to
perform the user-specific connection strategy. Currently one-to-one, N-to-one, uniform random-
to-N, sub-group-to-N and polar-random-to-N flags are supported (see WGroup.h header file).
Since the entities inside a group are often browsed sequentially, high efficient iterators are
defined also for this structure. I/O buffering operations are redefined to automatically join
I/O buffering operations of each grouped entity. The Wgroup architecture is shown in Fig.
3.6.

Fig. 3.6. Architecture of theWGroup structure. Many entities may be grouped togheter in
order to create an high-level entity able to populate the process environment

 Sensor and Data Fusion

350

3.8 SensorDriver and ActuatorDriver
The SensorDriver structure is the starting point for filtering input data coming from the
generic input system. This structure directly derives from 3DObject and uses IFNeuron and
IFNeuronGroup structures. These two structures are specifically designed for artificial neural
networks using the integrate-and-fire model, as it will be discussed later. However at this
level they are used as buffering structures where the process functions (Set-Input, Update)
are skipped by the framework. This choice, as it will be shown, does not cause lack of
efficiency and of generality.
Since sensor information have to be available before then the framework update step, the
SensorDriver objects have to be added into 3DWorld by the user before than other process
object. During the construction of the structure, only the Set-Input flag is set. SetInput
method will be redefined for the specific hardware in derived structures, where the data
filtering algorithm will be specified.
During the initialisation step (InitDriver) the user will specify the length of the sensor buffer
data needed during the hardware acquisition step. At this point the driver just allocates the
memory space in a static array, and it waits for the registration of the IFNeuron entities.
These entities represent the objects where sensor data will be mapped. Such entities will be
specifled using the Register method, where the SetInput and Update flags are automatically
removed from each registered entity. SensorDriver structure will be operative only when all
of the needed mapping entities will be registered by the user. In order to speed up the
acquisition process, the references of the IFNeuron objects are indexed during the registering
phase. Such a strategy permits a direct memory access over all the registered entities. The
user may choose to switch on/off the driver using the SetPowerOn method. The SensorDriver
architecture is shown in Fig. 3.7. The ActuatorDriver structure follows a similar architecture.

Fig. 3.7. Architecture of the SensorDriver structure. This object represents the base model for
the interface of a generic input system

A Biologically Based Framework for Distributed Sensory Fusion and Data Processing

351

4. Cortical-based artificial neural networks
The concept of artificial neural networks is to imitate the structure and workings of the
human brain by means of mathematical models. Three basic qualities of the human brain
form the foundations of most neural network models:
• knowledge is distributed over many neurons within the brain;
• neurons can communicate (locally) with one another;
• and the brain is adaptable.
The terminology with which neural networks are described is derived from these three
qualities of the human brain, and is as follows:
• structure of the neuron;
• network topology;
• adaptation and learning rule.
The neurons, or processing units, which make up the neural network are single elements
and consist principally of four components:
• a connection function;
• an input function;
• an activation or transfer function;
• an output function.
A neuron receives signalsthrough several input connections. These are weighted at the input
to a neuron by the connection function. The weights employed here define the coupling
strength (synapses) of the respective connections and are established via a learning process,
in the course of which they are modified according to given patterns and a learning rule.
The input function compresses these weighted inputs into a scalar value, the so-called
network activity at this neuron. Simple summation is generally employed here. In such
cases, the network activity, which results from the connection function and the input
function, is the weighted sum of the input values. The activation function determines a new
activation status on the basis of the current network activity, if appropriate taking the
previous status of the neuron into account. This new activation status is transmitted to the
connecting structure of the network via the output function of the neuron, which is
generally a linear function. By way of reference to biological neurons, the activation status at
the output of a neuron is also known as the excitation of the neuron.
A process unit is of interest only as a unit of a network consisting primarily of homogeneous
elements. In artificial neural nets, these elements are generally interconnected to form a rigid
network structure, as a result of which the learning algorithm only rarely includes provision
for the formation of new connections and the removal of old connections, such as occurs in
biological systems. A layered connecting structure is generally employed, whereby the layer
on which the input signals act is referred to as the input layer; the layer at which the results
are collected is known as the output layer; and the layers located between these are known
as hidden layers. The neurons are generally fully connected on a layer-by-layer basis. The
number of layers often determines the performance of a network.
A distinction can be made between feedforward, lateral and feedback connections for the
method of linking the different layers. Both feedforward and feedback connections over
several layers are conceivable. The connecting structure and the choice of processing units
determine the structure of a network. In order to carry out a data fusion and a classification,
the network must be taught a task by presenting it with examples in a training phase. The

 Sensor and Data Fusion

352

training phase normally proceeds as follows: random values are initially assigned for the
weights of the neurons. Patterns from a training data record are then presented to the
network and the weightings are adapted on the basis of the learning rule and training
pattern until a convergence criterion, e.g. a defined error threshold, is attained. A test phase
is then carried out, in which unknown test patterns are presented to the network to establish
the extent to which the network has learnt the task in hand. Selection of the patterns for the
training phase is a particularly important aspect. These patterns must describe the task as
completely as possible, as in later use the network will only be able to provide good results
for problems which it has learnt. This means that patterns must be selected which cover all
classes and, where possible, describe the boundary ranges between the classes.
Most of these architectures are not able to proceed in new learning processes without
loosing memory of the past learning processes (catastrophic interference) [16, 17]. In order to
overcome these issues models able to gain short-term priming in co-operation with other
modules have been developed. In particular, hippocampus-based models operate a pattern
separation avoiding the catastrophic interference [11, 12]. Input patterns are spread among
different interconnected modules following the McCloskey and Cohen model [11] consisting
of several interconnected two-dimensional self-organising maps of artificial neurons (Fig.
4.1). The Input Entorhinal Cortex and the Output Entorhinal Cortex maps represent
respectively the input and the output of the net. Input and output maps have the same
dimension in order to evaluate the activation and deactivation error by a one-to-one
comparison of neuronal activity. Activation error represents the percentage of neurons that
are firing in the Output Entorhinal Cortex and that are under threshold in the Input
Entorhinal Cortex. Deactivation error represents the percentage of neurons that are under
threshold in the Output Entorhinal Cortex and that are firing in the Input Entorhinal Cortex.

Fig. 4.1. Hippocampus model proposed by McCloskey and Cohen; a) Input pattern; b) Input
Entorhinal Cortex; c) Output Entorhinal Cortex; d)Dentate Gyrus; e) CA3; f) CA1

A Biologically Based Framework for Distributed Sensory Fusion and Data Processing

353

4.1 Learning strategy: selection of neuronal groups
The Theory of Neuronal Group Selection (TNGS) proposed by Edelman [18, 19], suggests a
novel way for understanding and simulating neural networks. To take into account this
theory we have to use the time variable in the learning task, so that neural groups may raise
from a selection process. This strategy has been adopted by Izhikevich, who simulated a
minimal neural network which is able to show the property of polychronization [20]. In such a
network a correspondence between synaptic weights and axonal delays exists as a result of
the neuron bahaviour. One neuron can belong to many groups, which count is usually
higher than the count of the neurons theirself. This guarantees a memory capability which is
higher than the capability reached by the classical neuronal network. Such an architecture
has been implemented into the framework here presented, giving the possibility to connect
the neuronal groups to sensory and actuating systems. The advantage of the use such an
approach makes it possible to gain time-space correlation on input signals.
The classical approach in artificial neural networks simulation takes into account the
modulation of the action potential rithm as the only parameter for the information flowing
to and from each neuron. Such a strategy seems to be in contrast with novel experimental
results, since neurons are able to generate action potential which are besed on the input
spike timings, with a precision till to one millisecond. The spike-timing synchrony is a
natural effect that permits a neuron to be activated in correspondence of synchrounous
input spikes, while the neuronal activation of the post-synaptic neuron is negligible if pre-
synaptic spikes arrives asynchronously to the target neuron. Axonal delays usually lie in the
range [0.1 , 44] milliseconds, depending on the type and location of the neuron inside the
network. Such a property becomes an important feature for the selection of the neural
groups as it is exposed by Edelman. In the artificial neural network model, the synaptic
connection are modified according to the STDP rule. If a spike coming from an excitatory
pre-synaptic neuron causes the fire of the post-synaptic neuron, the synaptic connection if
reinforced since it given the possibility to generate an other spike in order to propagate the
signal. Otherwise the synaptic connection is weakened. The values of the STDP parameters
are choosen in order to permit a weakening that is grater than the reinforcement. Such a
strategy permit the progressive removal of the unnecessary connections and the persistance
of the connections between correlated neurons.

5. Implementation of artificial neurons: towards real-time data fusion and
processing
The complexity of a biological neuron may be reduced by using several mathematical
models. Each of these reproduce some of the functionalities of real neurons, such as the
excitability in response to a specific input signal. The most accurate model for a biological
neuron has been developed by Hodgkin and Huxley [13] and it is able to exactly reproduce
the shape of the action potential of a neuron by taking into account the ionic currents. Beside
of this, the model is computationally expensive and it takes about 1200 FLOPs (FLoating
Point Operations) to simulate one millisecond of a single neuron activity. Several attempts
have been made in order to reduce the mathematical complexity of this model. The most
effective result has been obtained by the Morris-Lecar model [13], which is able to describe
the oscillations of the muscular fibers of the giant squid and it is still close to the Hodgkin-
Huxley model accuracy. Unfortunately the computational complexity is still high, since it
takes about 600 FLOPs for one millisecond of neuron activity. Since these bottom-up

 Sensor and Data Fusion

354

approaches are focused on the characterization of the biophysic properties of the cell
membrane, a different approach has been adopted by Fitzhugh and Nagumo [13], taking
into account the information of the nervous signal as a temporal distribution rather than an
action potential shape. This top-down approach leads to the development of parametric
differential equations with the aim to match them with experimental results. The Fitzhugh-
Nagumo model, wich takes about 72 FLOPS for one millisecond of neuron activity, is based
on a variant of the Van Der Pol oscillator. Studies on the dynamics of non-linear systems
swoed a large variety of behaviours. Actually, the use of mathematical analogies seems to be
the only way to simulate a large number of interconnected artificial neurons.
For this reason the integrate-and-fire model (and its variant models) is the simpler and most
used model for classification and prediction tasks in pratical scenarios.

5.1 The integrate-and-fire model
The integrate-and-fire model is the simplest model of a spiking neuron that takes into
account the dynamics of the input. The basis of the integrate-and-fire model is the simple
compartmental model of a neuron. The equivalent electric schema is showed in Fig. 5.1.

Fig. 5.1. The integrate-and-fire artificial neuron model: equivalent electric schema

The computational implementation of the integrate and fire model follows the schema
showed in Fig. 5.2.

Fig. 5.2. The integrate-and-fire artificial neuron model: computational schema

An IFNeuron structure has been implement in the framework as a running process directly
deriving from the W structure. Template arguments have been specialised to obtain an
OUTDATA as a real number (double precision floating point value) and a CONNSPEC as a
IFNeuronConnectionSpec structure, which is shown in Fig. 5.3.
The connection structure for such a process uses a real number to manage the synaptic
weight. The value may be initialised by the user or randomly chosen by the framework

A Biologically Based Framework for Distributed Sensory Fusion and Data Processing

355

according to the value initialisation parameters. A weight buffer value is needed for internal
operations during supervised learning using the multi layer perceptron process, which will
be discussed later. The IFNeuron structure defines the private virtual method Process in
order to perform the weighted sum of signal coming from input connections. The result
value is then filtered using the sigmoid function according to the integrate and fire model.
The structure internally saves a value to speed up the delta-rule algorithm adopted during
supervised learning. The I/O buffering operations simply manage internal members and
recall the base class methods. The rendering function provides the graphic visualisation of
the soma and of the input connections. The architecture is shown in Fig. 5.4.

Fig. 5.3. The IFNeuronConnectionSpec structure

Fig. 5.4. Architecture of IFNeuron structure

The IFNeuronGroup structure, which represents a group of IFNeurons, has been derived from
the WGroup base structure. The IFNeuronGroup structure will be used by high-level
processes in order to perform supervised and unsupervised learning tasks based on the
integrate and fire neuron model.

 Sensor and Data Fusion

356

5.2 The leabra neuron model
The Leabra base model [11, 12] is a simplified version of the Hodgkin-Huxley model. Both
models are shown in Table. 1.

Table 1. Top: Hodgkin and Huxley neuron model, based on chemical species. Bottom:
Leabra model; a) Excitatory conductance; b) Inhibitory k-WTA function; c) Membrane
potential; d) Activation function

Leabra uses a point neuron activation function that models the electrophysiological
properties of real neurons, while simplifying their geometry to a single point. This function
is nearly as simple computationally as the standard sigmoid activation function, but the
more biologically-based implementation makes it considerably easier to model inhibitory
competition, as described below. Further, usingthis function enables cognitive models to be
more easily related to more physiologically detailed simulations, thereby facilitating bridge-
building between biology and cognition.
Leabra uses a kWTA (k-Winners-Take-All) function to achieve inhibitory competition
among units within a layer (area). The kWTA function computes a uniform level of
inhibitory current for all units in the layer, such that the k+1th most excited unit within a

A Biologically Based Framework for Distributed Sensory Fusion and Data Processing

357

layer is generally below its firing threshold, while the k-th is typically above threshold.
Activation dynamics similar to those produced by the kWTA function have been shown to
result from simulated inhibitory interneurons that project both feedforward and feedback
inhibition. Thus, although the kWTA function is somewhat biologically implausible in its
implementation (e.g., requiring global information about activation states and using sorting
mechanisms), it provides a computationally effective approximation to biologically
plausible inhibitory dynamics. For learning, Leabra uses a combination of error-driven and
Hebbian learning. Implementation diagrams are shown in Table 2.

Table 2. Leabra model: inheritance and collaboration diagrams of structures for leabra
model implementation

5.3 The Izhikevich artificial neuron
Izhikevich recently developed a simple model for an artificial neuron wich is able to
reproduce all the behaviours showed above [13]. The model takes 13 FLOPs for simulate one
millisecond of neuron activity and it is based on a top-down approach, using two
differential equation with four parameters. The introduction of axonal delays shows the
possibility to create a neural network able to perform classification and prediction tasks. The
connection of several maps follows and the Spike-Timing-Dependant Plasticity (STDP) rule,
which permits the implementation of a real time learning rule based on signals which
continuously flow from input systems. This architecture follows the theories of Edelman
about the selection as the basis for the learning process.
The model proposed by Izhikevich for the artificial neuron simulation shows the ability to
reproduce the same accuracy of the Hodgkin and Huxley model. It can be resumed in the
following relations:

 Sensor and Data Fusion

358

A reset condition is needed:

The four parameters (a, b, c and d) are dimensionless values. The v variable represents the
membrane potential of the neuron, while u keeps into account the activation of K+ ionic
currents and the deactivation of the Na+ ionic currents. The I variable takes into account the
synaptic currents and the bias currents as the input signal of the neuron. Depending on the
values of the four parameters, the system may have a steady-state (which corresponds to a
lack of activity in the neuron) and an unsteady-state (which corresponds to the presence of
activity in the neuron). The reset condition is needed to perform the return of the system
into the steady state after the neuron has fired. Table 3 shows the values of the four
parameters in order to obtain the known neuron behaviours.
In order to implement a network able to use the polychronization feature as it is described
above, a software module has been realised. An IzhikevichNeuron structure (see Fig. 5.5) has
been implement in the framework as a running process directly deriving from the W
structure.

Fig. 5.5. The IzhikevichNeuron structure

A Biologically Based Framework for Distributed Sensory Fusion and Data Processing

359

Template arguments have been specialised to obtain an OUTDATA as a real number
(double precision floating point value) which represents the membrane potential of the
neuron, and a CONNSPEC as a IzhikevichNeuronConnectionSpec structure, which is shown in
Fig. 5.6.

Fig. 5.6. The IzhikevichNeuronConnectionSpec structure

The connection structure for such a process uses real numbers to manage the synaptic
weight and the synaptic channel delay. The values may be initialised by the user or
randomly chosen by the framework according to the value initialisation parameters. A
delta-weight value is needed for internal operations during the learning process, as it will be
discussed later.
The IzhikevichNeuron structure is initialised using the Init method in order to setup the
internal parameters (a, b, c, d) which specify the behaviour of the artificial neuron. Several
initialisation wrapper methods are provided to use predefined behaviours as they are
showed in Table 3. The STDP algorithm (Fig. ??) is implemented with a time-window of size
equal to 1000 milliseconds. During this period the delta-weight values are updated
according to the STDP rule, while weights are updated at the end of each period. During
each period the structure traces the firing activity and the STDP status of the neuron, storing
the information in two static arrays. The structure defines the private virtual method Process
in order to perform the learning task. If the neuron is firning, the Process method reset the
internal status (u, v) and the STDP value is reported to a value equal to 0.1. Otherwise the
STDP value is decreased with a time-constant equal to 20 milliseconds. Subsequently the
input connections are browsed to update input current, whose contribute depends on the
thalamic input neurons and on those neurons who fired with a timing equal to the
connection delay. According to the STDP rule, the STDP value of the post-synaptic neuron is
increased if it fired synchronously with the the pre-synaptic neuorn, and it is decreased if

 Sensor and Data Fusion

360

the pre-synaptic fire caused no firing in the post-synaptic neuron. Finally the status is
updated following the Izhikevich model, and, if 1000 milliseconds are enlapsed, the synaptic
weights of the connections coming from the excitatory neurons are updated with the actual
delta-weigth values. During this step the weights are clamped within a convenient range
and the delta-weight values are decreased with using a decay coefficient equal to 0.9.

Table 3. Values of the four dimensionless parameters used to obtain the corresponding
neuron behaviour.

The I/O buffering operations simply manage internal members and recall the base class
methods. The rendering function provides the graphic visualisation of the soma and of the
input connections.
The IzhikevichNeuronGroup structure (Fig. 5.7a), which represents a group of
IzhikevichNeurons, has been derived from the WGroup base structure. The IFNeuronGroup
structure will be used by high-level processes in order to perform the monitoring of the
activity of the neurons during the learning and test tasks. Methods are provided to obtain
the activation percentage (GetActPerc) and to retrieve the sub-group identification relating
to a specified input pattern. A specific structure (ARI_ING_Record) has been realised to
store the neuron reference and the activation time for each neuron belonging to the sub-
group. Such records can be enumerated using the the iterator methods (First, End, Next,
Get).

A Biologically Based Framework for Distributed Sensory Fusion and Data Processing

361

Moreover, an IzhikevichMap structure (Fig. 5.7b) has been derived from W base structure in
order to speed-up the artificial neural group processing. This structure includes all the
previous described structures, optimising the memory usage and computational efficiency.

Fig. 5.7. a) The IzhikevichNeuronGroup structure. b) The IzhikevichMap structure

 Sensor and Data Fusion

362

A ThalamicRandomSensorDriver structure has been developed to train the architecture with
random signals. Such signals are the basis of the cortico-thalamic interplay of neural
assemblies and temporal chains in the cerebral cortex. A Mic-SensorDriverStructure has been
used to test the architecture with audio signals. For such signals the power spectrum has
been obtained using the ARI_FFT structure. Both structures are showed in Fig. 5.8.

Fig. 5.8. a) The ThalamicRandomSensorDriver structure. b) The MicSensorDriver structure

6. Conclusions
In this work authors describe a high-efficiency architecture for parallel sensory fusion and
real-time management of heterogeneous multi-transducers data processing. The interfaces
with the external sensors and actuators, the specific control and processing methods and the
data flowing through inner communication channels can be defined. For such entities the
framework offers extendable structures, whose base implementation allows the realisation
of high-efficiency data processing.Systems equipped with multiple transducers, tasks
execution that are running as cooperative processes, off-line and real-time data aquisition
and analysis tools, general stand alone applications represent some of the potential
application areas.
A library-oriented interface was preferred to a user-oriented interface. Real-time analysis
and actuation is gained for all the transducers and for all the running processes. Multi-
process cooperation is possible thanks to a homogeneous communication language. The
user can create extensions of new models of entities and processes. The data acquisition
from sensor devices is granted by a protocol interface that is able to dispatch data coming
from input systems. The data processing may be specified by the user inside the framework
core. The actuator driving is granted by a protocol interface that is able to dispatch data
from the framework core. Filters for sensory and actuating systems can be redefined
according to the particular device technology; the efficiency of the filtering and buffering
processes over the data coming from sensors and over the data directed to actuating devices
is delegated to appropriate interfaces. The portability is allowed by a layered structure, an
abstraction, and by the specification of the I/O drivers. A modular, reusable and object-

A Biologically Based Framework for Distributed Sensory Fusion and Data Processing

363

oriented architecture grants a parallel distributed processing, making the framework base
architecture available to the researcher as a structured programming environment. Such
features make the framework a solution for high-complex simulation tasks, representing a
powerful instrument for the development of complex simulation tools operating as off-line
and real-time applications.

7. References
[1] Lee, K. & Schneeman, R., (2000). Distributed measurement and control based on the IEEE

1451 smart transducer interface standards. IEEE Transactions on Instrumentation and
Measurement, Vol. 49, No. 3.

[2] Steinberg, A.N. (2001). Data fusion system engineering. IEEE Aerospace and Electronic
Systems Magazine, Vol. 16, No. 6.

[3] Martin, C.; Schaffernicht, E.; Scheidig, A. & Gross, H.-M. (2006). Multi-modal sensor
fusion using a probabilistic aggregation scheme for people detection and tracking.
Robotics and Autonomous Systems, Vol. 54, No. 9, 721-728.

[4] Li, C.; Heinemann, P. & Sherry, R. (2007). Neural network and Bayesian network fusion
models to fuse electronic nose and surface acoustic wave sensor data for apple
defect detection. Sensors and Actuators B: Chemical, Vol. 125, No 1, 301-310.

[5] Pioggia, G.; Ferro, M. & Di Francesco, F. (2007). Towards a real-time transduction and
classification of chemo-resistive sensor array signals. IEEE Sensors Journal, Vo. 7,
No. 2, 237-244.

[6] Ping, W.; Qingjun, L.; Wei, Z., Hua, C. & Ying, X. (2007). The design of biomimetic
artificial nose and artificial tongue. Sensors & Materials, Vo. 19, No 5, 309-323.

[7] Soria-Frisch, A.; Verschae, R. & Olano, A. (2007). Fuzzy fusion for skin detection. Fuzzy
Sets and Systems, Vol. 158, No. 3, 325-336.

[8] Härter, F.P. & Fraga de Campos Velho H. (2008). New approach to applying neural
network in nonlinear dynamic model. Applied Mathematical Modelling, Vol. 32, No.
12, 2621-2633.

[9] Damasio, A. (2000). The feeling of what happens. London: William Heinemann.
[10] Driver, J. & Noesselt, T. (2008). Multisensory Interplay Reveals Crossmodal Influences

on 'Sensory-Specific' Brain Regions, Neural Responses, and Judgments. Neuron,
Vol. 57, No. 1, 11-23.

[11] O'Reilly, R.C. & Munakata, Y. (2000). Computational Explorations in Cognitive Neuro-
science: Understanding the Mind by Simulating the Brain. MIT Press: Cambridge.

[12] O'Reilly, R.C. (2006). Biologically Based Computational Models of High-Level
Cognition. Science, 314, 91-94.

[13] Izhikevich, E.M. (2007). Dynamical Systems in Neuroscience: The Geometry of
Excitability and Bursting. The MIT press.

[14] Izhikevich, E.M. & Edelman, G.M. (2008). Large-Scale Model of Mammalian
Thalamocortical Systems. PNAS, 105:3593-3598.

[15] Whittington, M.A.; Traub, R.D.; Kopell, N.; Ermentrout, B. & Buhl, E.H. (2000).
Inhibitionbased rhythms: experimental and mathematical observations on network
dynamics. Int. J. of Psychophysiol., Vol. 38, 315-336.

[16] Sougnè, J.P. & French, R.M. (2002) Synfire Chains and Catastrophic Interference,
Proceedings of Annual Conference of Cognitive Science Society.

 Sensor and Data Fusion

364

[17] Norman K.A.; Newman E.L. & Perotte A.J. (2005). Methods for reducing interference in
the Complementary Learning Systems model: Oscillating inhibition and
autonomous memory rehearsal. Neural Networks, Vol. 18, No. 9, 1212-1228.

[18] Izhikevich, E.M.; Gally, J.A. & Edelman, G.M. (2004) Spike-Timing Dynamics of
Neuronal Groups. Cerebral Cortex, Vol. 14, 933-944.

[19] Edelman, E. (1987). Neural Darwinism: The Theory Of Neuronal Group Selection. Basic
Books.

[20] Izhikevich, E.M. (2006). Polychronization: Computation With Spikes. Neural
Computation, Vol. 18, 245-282

	Text2: Open Access Database www.intechweb.org
	Text1: Source: Sensor and Data Fusion, Book edited by: Dr. ir. Nada Milisavljević,
 ISBN 978-3-902613-52-3, pp. 490, February 2009, I-Tech, Vienna, Austria

