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1. Introduction 
The increasing complexity of the artificial implementations of biological systems poses 
issues in sensory feature extraction and fusion, drift compensation and pattern recognition, 
especially when high reliability is required [1, 2, 3, 4]. In particular, in order to achieve 
effective results, the pattern recognition system must be carefully designed. At present, 
these instruments often fail to give the expected results and research is under development. 
This happens for a series of concomitant causes, ranging from the measurements, to the 
limits relevant to instability and non-reproducibility of most existing sensors, up to the 
inappropriate use of the pattern recognition scheme, i.e. the perception of an odour/taste 
and its classification through the comparison with similar stimuli perceived in the past. 
Many techniques are used for this purpose, but recently, the processing architectures are 
often performed by models inspired by biology, such as genetic algorithms and Artificial 
Neural Networks (ANN) [4, 5, 6]. Enhancing the reliability of high-level processing systems 
represents the next critical step. Such architectures require high-efficiency interconnection 
and co-operation of several heterogeneous modules, i.e. control, data acquisition, data 
filtering, feature selection and pattern analysis. Heterogeneous techniques derived from 
chemometrics, neural networks, fuzzy-rules used to implement such tasks may introduce 
module interconnection and cooperation issues [7, 8]. It may not be reliable to establish a 
multi-channel communication among common artificial neural networks tools, feature 
extraction and selection processes, and acquisition and control systems. Moreover, high 
level interfaces often do not allow adapting of the architecture and/or the processes 
topology at run-time. As a result complex processing methods have to be designed. A real-
time approach for data analysis requires the realization of interconnected modules which 
are capable to establish an efficient communication channel. In this way the application 
should be able to control all modules of the elaboration chain, including analysis protocol 
management and sensory and actuating interfaces. 
The body is felt as a unity, with different qualities at different times and the brain 
mechanism that underlies the experience also comprises a unified system that acts as a 
whole and produces a neurosignature pattern of a whole body [9]. A distributed processing 
throughout many areas of the brain, comprises a widespread network of neurons that 
generates patterns, processes information that flows through it, and ultimately produces the 



 Sensor and Data Fusion 

 

338 

pattern that is felt as a whole body possessing a sense of self. The stream of neurosignature 
output with constantly varying patterns riding on the main signature pattern produces the 
feelings of the body-self with constantly changing perceptual and emotional qualities. The 
new breakthroughs made in the past few decades in material science in order to develop 
intelligent sensing materials built in compliance, non-linearity and softness allow to mimic 
the multi-component and bi-phasic nature of biological matter. Moreover, intelligent 
algorithms allow the transduction signals to be effectively reconstructed. In order to provide 
an artificial neural network architecture with the capabilities of processing, coding and 
fusing in real-time the distributed information continuously flowing from an artificial 
distributed sensing network, in this chapter a mammalian cortex inspired model is 
described. 
According to the biological sensory systems, where environmental stimuli are deconstructed 
and then reconstructed in the brain to create perceptions [10], the presented architecture 
may help dealing with a dynamic and efficient management of multi-transducer data 
processing techniques, as well as serving as an initial step in the reconstruction of a fused 
image from its deconstructed features. The raw signals obtained from artificial 
implementations of biological systems can be preprocessed in order to extract relevant 
features. Features vectors constitute the dataset for sensory fusion and the pattern 
recognition processes. Fusion and processing are achieved by the homogeneous software 
frameworkwhere, in order to gain short-term priming in co-operation with other modules, 
artificial neural models and architectures inspired to the mammalian cortex [11, 12, 13, 14] 
are implemented. Artificial neuron models with high computational efficiency and 
biological accuracy are adopted to obtain a learning strategy able to avoid catastrophic 
interference [15, 16, 17] and to enable a selection of neuronal groups [18]. To take into 
account this theory the time variable in the learning task is used, so that neural groups may 
raise from a selection process. 
The framework is able to manage at the same time transducer devices and data processing. 
Synchronization among modules and data flow is managed by the framework offering 
remarkable advantages in simulation of heterogeneous complex dynamic processes. Specific 
control processes, pattern recognition algorithms, sensory and actuating interfaces may be 
created inheriting from the framework base structures. The architecture is library-oriented 
rather than application-oriented and starting from the base models available in the 
framework core dedicated models for processes, maps and connections may be derived. 
Such a strategy permits the realisation of a user-defined environment able to automate the 
elaboration of cooperating processes. Etherogenous processes will be able to communicate 
each other inside the framework as specified by the user. The framework architecture has 
been designed as a hierarchical structure whose root is a manager module. It is realised as a 
high-level container of generic modules and it represents the environment in which process 
modules and I/O filtering interfaces are placed. Modules may be grouped recursively in 
order to share common properties and functionalities of entity modules belonging to the 
same type. Communication channels are realised as connections through specific projection 
types that specify the connection topology. Connections are delegated to dispatch 
synchronization information and user-defined data. The filtering interface modules are able 
to drive the transducer hardware and to dispatch information to process modules. All base 
modules manage dynamic structures and are designed to maintain data consistency while 
the environment state may change. High level processes such as control processes and 
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pattern recognition algorithms are defined as application processes inside the framework. 
Such processes inherit properties and functionalities from the framework base structures, 
taking advantage of automation capabilities provided by the framework core. The 
framework allows to create a communication language between the framework core and the 
hardware architecture. This guarantees an increased flexibility thanks to the presence of 
interfaces performing the function of interpreters for the specific hardware and filters which 
specify the way the framework core senses and communicates the information. 

2. A framework solution for high complex tasks 
From a general point of view, a complex system consists of different modules cooperating in 
order to perform data acquisition from multiple sensors, data analysis through several 
techniques and data redirection to the actuator systems. The architecture here proposed 
addresses three main issues: 
• acquisition from sensors: a protocol interface will be available to dispatch data coming 

from input systems; for each hardware sensory system the user will realize the software 
driver to filter the signals and to dispatch data to the framework core via the framework 
I/O interface. 

• data processing: inside the framework core all the processes will be specified by the 
user; for each process the user will specify the algorithms, the connection topology 
between other processes and, optionally, the geometrical structure. 

• actuator driving: a protocol interface will be available to dispatch data from the 
framework core; for each hardware actuating system the user will realize the software 
driver to filter the data and to dispatch the signals from the framework I/O interface to 
the actuating systems. 

The design of a versatile instrument for data management and elaboration should be 
suitable for those systems which are equipped with distributed transducer devices, where a 
particular attention should be paid to inter-process communication. Applications of such 
instrument space from the simple elaboration of signals supplied by sensory and actuating 
networks, to pattern analysis and recognition techniques. Design specification included the 
ability to let the system to be able to operate in real-time. The realization of a framework 
able to perform a parallel device management should give to all the modules the ability to 
cooperate and the possibility to share data coming from sensory systems and directed to the 
actuating systems. The possibility to operate in real time imposes critical efficiency 
requirements to each single module. The framework design pays attention to the 
management and the synchronization of data and processes. Control modules and pattern 
recognition algorithms are defined as application processes inside the framework. The 
framework is realised as a software library in order to exploit the potentials of the 
computational algorithms and to enhance the performances of the processing techniques 
based on artificial neural networks. The architecture is able to manage at the same time 
transducer devices and data processing. Synchronization among modules and data flow is 
managed by the framework offering remarkable advantages in simulation of heterogeneous 
complex dynamic processes. Specific control processes, pattern recognition algorithms, 
sensory and actuating interfaces may be created inheriting from the framework base 
structures. 
In order to exploit the potentials of the computational algorithms and to enhance the 
performances of control processing techniques, the framework is realised as a C++ software 
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library. In this way the library architecture is a re-programmable instrument available to the 
user to develop specific applications. It has been designed to be portable to any software 
platform in order to gain abstraction from the operating system. The framework however 
needs a low-level software layer to perform kernel re-building and low-level system calls. 
An Intel-based personal computer is actually being used and a commercial operative system 
grants the low-level communication. 

2.1 I/O device communication 
The framework core and application processes are interfaced with the outside world 
through the framework I/O interface. This layer has been developed in order to act as a 
buffer for the flow of information coming in from the sensors and out to the actuators. With 
this strategy sensory fusion is gained enabling an abstraction with respect to the specific 
technology of the transducers used. Signals coming from the sensors are gathered in parallel 
and are encoded according to a standard protocol. The encoded information is received by a 
specific filter for each sensor, which then sorts them to framework I/O interface. For each 
actuating system a mirror image architecture has been reproduced with respect to the one 
described for the sensors. The information available in the framework I/O interface is 
encoded by a filter using the same standard protocol. A specific interface for each actuator 
pilots its specific hardware system. This architecture allows setting up a communication 
language between the framework core and sensory and actuating devices. This guarantees 
an increased flexibility thanks to the presence of interfaces performing the function of 
interpreters for the specific hardware and filters which specify the way the framework core 
senses and communicates the information. Fig. 2.1 shows the flow of information to and 
from the framework core. Communication channels are established as connections between 
application processes so that framework is able to perform a low-level inter-process 
communication. The domain of data flowing through connections and the flow chart of the 
application processes are user-defined. 

2.2 Parallel distributed processing  
Synchronization among modules and data flow is managed by the framework offering 
remarkable advantages in simulation of heterogeneous complex dynamic processes. Specific 
control processes, pattern recognition algorithms, sensory and actuating interfaces may be 
created inheriting from the framework base structures, taking advantage of process 
automation provided by the framework core. A spatial definition of the entities involved in 
the framework can be supplied, making this information available to the control system for 
subsequent processing. To guarantee the execution of real-time applications an inner 
synchronization signal is provided from the framework core to the processes and to the 
framework I/O interface, enabling to gain time-space correlation. A dynamic geometrical 
representation can be visualised by a high efficiency 3D graphic interface, giving a support 
during experimental setup debug. Processes and connections are managed at run time and 
they can be manipulated under request. The presence of dynamic structures implies a 
configurable resource management, so the framework offers an optimised interface for 
enumeration and direct access requests. 

2.3 Control and processing modules  
The framework architecture has been designed as a hierarchical structure whose root is a 
manager module (3DWorld ). It is realised as an high-level container of generic modules 
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Fig. 2.1. Architecture of the framework for the parallel management of multiple elaboration 
processes. The transducer devices are synchronized and controlled through an appropriate 
I/O interface 

representing the environment in which process modules (W) and I/O filtering interfaces are 
placed (Drivers). All these modules inherit low-level properties and functionalities from a 
base module (3DObject ) realised as an element able to populate the process environment. 
Virtual and pure-virtual functionality strategies have been applied to this base module in 
order to obtain an abstraction with respect to the generic application task. In this way the 
core is able to process user-defined functionalities without being reprogrammed. Moreover, 
modules may be grouped recursively (WGroup) in order to share common properties and 
functionalities of entity modules belonging to the same type. Communication channels are 
realised as connections (WConnection) through specific projection types that specify the 
connection topology. Connections are delegated to dispatch synchronization information 
and user-defined data (WConnectionSpec). The filtering interface modules are able to drive 
the transducer hardware and to dispatch information to process modules. All base modules 
manage dynamic structures and they are designed to maintain data consistency while the 
environment state may change. This behaviour permits the execution of dynamic and real-
time parallel distributed processing while synchronization and data flowing are managed 
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by the environment. All modules are realized as running processes while their control and 
synchronization is managed by the framework. The hierarchical and collaboration chart of 
the base structures is shown in Fig. 2.2. 
 

 
Fig. 2.2. Inheritance and collaboration diagram of the main modules of the framework core: 
I/O interfaces, communication channels, processes 

3. Framework overview 
Architecture implementation details will be showed in this section making use of the 
Unified Modelling Language (UML) representation. In Fig. 3.1 the legend is showed. 
 

 
Fig. 3.1. Graph relationship legend 

The boxes in the above graph have the following meaning: 
• A filled black box represents the struct or class for which the graph is generated. 
• A box with a black border denotes a documented struct or class. 
• A box with a grey border denotes an undocumented struct or class. 
• A box with a red border denotes a documented struct or class for which not all 

inheritance/containment relations are shown. A graph is truncated if it does not fit 
within the specified boundaries. 

The arrows have the following meaning: 
• A dark blue arrow is used to visualize a public inheritance relation between two classes. 
• A dark green arrow is used for protected inheritance. 
• A dark red arrow is used for private inheritance. 
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• A purple dashed arrow is used if a class is contained or used by another class. The arrow 
is labeled with the variable(s) through which the pointed class or struct is accessible. 

• A yellow dashed arrow denotes a relation between a template instance and the 
template class it was instantiated from. The arrow is labeled with the template 
parameters of the instance. 

The implementation will be described using technical object-oriented language terms. To 
avoid confusion main terms are resumed: 
• an object is an synonymous word for a class or a structure and it defines a new data type. 
• an instance of an object is a variable declared as object type. 
• an object's property is called member. 
• an object's function is called method. 
• a derived object is a child of another object, and it inherits properties and functionalities 

from his father object, which is called base object. 
• a private member or method is accessible only inside the object. 
• a protected member or method is accessible both from the object and from a derived object. 
• a public member or method is always accessible. 
• while structures start implicitly with public definitions, classes start implicitly with 

private definitions. 
• a virtual method defines a function that, if it is overridden in a derived object, cause the 

call to derived method even it is called on the base object. 
• a pure-virtual method is undefined in the base object and, as a result, the base object can 

not be instantiated. 
• an abstract object contains only pure-virtual methods. 

3.1 Portability  
Since the framework library is written using the C++ programming language, the software 
portability is guaranteed by the standard ANSI-C/C++ definitions. However the low-level 
interfaces depend on the particular libraries of the operative system. For this reason a low-
level layer was defined to include all the dependencies for the specific platform. The low-
level layer (ARI_Macro) has been realised defining a set of operations for run-time memory 
management (allocation and deallocation), file I/O interface, log reports and window assert 
dialogs. All these operations are implemented as C++ macro and they will be used by the 
framework for all the low-level operative system interfacing. 
Graphic User Interface (GUI) is not embedded in the framework in order to not slow down 
the application efficiency and to let the user to be able to choose his preferred tools. Since 
each of the framework objects provides functions to get information about the status and the 
output data, the GUI tools are developed as external modules that can be linked to the 
architecture. Main graphic output is guaranteed by OpenGL rendering, which libraries are 
available for many hardware platforms. If the user choose to use OpenGL support, then he 
must link OpenGL libraries to his application. Application GUI is actually supplied for 
Microsoft Windows operating system, including useful tools for layered graphs (MGraph) 
and OpenGL dialog windows (glCDialog). While data storage is already supplied by the 
framework, additional end-user tools are available for file tables (TabData) and database 
tables (TabDataConn) supporting MySQL, SQLServer and general ODBC drivers. Since all 
these tools are external they not compromise the architecture efficiency, making the user 
able to choose his appropriate strategy. 
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3.2 Containers  
Container structures have been developed adopting a template-object strategy. A chunk-
memory-allocation strategy has been applied to dynamic containers in order to obtain a 
configurable compromise between flexibility and direct memory access efficiency. Iterators 
have been defined for such dynamic structures in order to perform high-efficiency list 
browsing. Static arrays are able to perform real-time memory reallocation. Basic containers 
are showed in Fig. 3.2. 
 

 
Fig. 3.2. Basic containers implemented in the framework. A chunk-memory allocation 
stategy has been applied to dynamic containers 
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3.3 The base structure: 3DObject  
The basic element of the framework is called 3DObject. This is an element able to perform 
basic functions which are useful to many of the modules included in the framework. 
3DObject properties include a label, a 3D position, a 3D radius and a set of user-defined 
flags. The label will be useful for log reports, application debug and for easy high-level 
object identification. The default label will be associated with the hexadecimal memory 
address of the object, which is unique during the execution of the application. Three-
dimensional position and radius will be useful for graphic rendering under user request. 
Such values are initialised with null values, since the rendering functions are optional. Flags 
specify the way in which the object manager will process the object (see 3DWorld ). By 
default no flag is set for a 3DObject. 
Several functions has been supplied for this base object in order to guarantee I/O transfers, 
3D management and flags maintenance. Since process objects will be derived from 3DObject, 
a set of virtual functions has been defined to perform process synchronization and update. 
The use of virtual functions guarantees the ability of the object manager to call redefined 
functions on derived objects without knowing them. User-defined processes have to follow 
the base virtual protocol, redefining the way in which synchronization and update 
operations are performed. In Fig. 3.3 the 3DObject architecture is showed. 
 

 
Fig. 3.3. Architecture of the 3DObject structure. This is the base object used to populate the 
process environment managed by the 3DWorld structure 

Defined virtual functions are Render, SetInput and Update. Each of these functions will be 
called by the object manager only if the appropriate flag is set. Such strategy makes the user 
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to be able to specify virtual overrides for his specific processes. Render function will specify 
the way in which the object will be graphically rendered. OpenGL is the default renderer, 
permitting an high efficient three-dimensional output. Graphic rendering is useful for object 
status monitoring during application execution and debug. The definition of a rendering 
function does not reduce object efficiency since Render virtual function will be called only if 
screen repainting is needed and if the rendering flag has been set. 
SetInput and Update functions specify the core process algorithms. The first method is 
needed to workaround the serial processing of all the objects. In fact the parallel execution of 
all the process objects will be serialized by the low-level CPU scheduling. The order of the 
execution of each process may compromise the effective result of the process network in the 
case of multiple cooperating processes. For this reason the object manager will first call the 
SetInput method over all the processes with the intent of buffering the actual output data 
over communication channels (see WConnection). After this buffering step, the Update 
method will be called over all the objects making use of the buffered connection data instead 
of the object actual output data. Such a strategy guarantees the independence from the 
process execution order. Default base method just defines the virtual processing and 
rendering protocol. 
The same virtual strategy has been adopted for buffers and files data storage. A set of virtual 
functions has been defined to perform an object independent way for file I/O (ToFile, 
FromFile) using platform independent file operations. Such methods use buffer virtual 
functions (ToBuffer, FromBuffer, GetBufferLen) which will be specified by the user for each 
process. Default implementation of buffer virtual methods just defines the buffering I/O 
protocol. 

3.4 The object manager: 3DWorld  
Synchronization and update of all the running processes is managed by 3DWorld. This 
structure is a collection of 3DObject. Elements are organised in a dynamic list where the 
access order is often sequential. 3DWorld provides the execution of specific methods for all 
the objects added during an initialisation step. Internally 3DWorld manages the reference of 
each object and not the object itself. This strategy speeds up the enumeration of the 
elements, giving to the user the opportunity to override the manager behaviour and to gain 
the direct control of each single element. Elements may be added and removed at run-time 
(AddObject, RemoveObject ) while the execution of process virtual methods is managed 
accordingly to the active flags of each elements (Render, SetInput, Update). 

3.5 The base process structure: W  
The process base structure inherits properties and functionalities from 3DObject. W is a 
generic transferring function, which is able to communicate with structures of the same base 
type. Communication channels are established as connections and the domains of input and 
output data are defined by the user. For this reason a pure-virtual strategy has been applied 
to this structure to take into account a processing method (Process) which is still not defined 
at this level. For this reason a W structure can not be instantiated. It only defines the process 
standard protocol and provides topology connection methods. Render, SetInput and Update 
flags are automatically activated in the initialization step. The architecture of W structure is 
shown in Fig. 3.4. 
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Fig. 3.4. Architecture of the W structure. It represents the base process model 

W is a template structure where OUTDATA and CONNSPEC types are user-defined. While 
OUTDATA represents the output pattern, CONNSPEC contains the specification for each 
input connection. The 3DObject virtual method Update is redefined to set the new output 
value accordingly to the result of the pure virtual method Process, which will be specified in 
derived process structures. Actual process output can be retrieved using GetOutput method. 
W provides methods to specify the connection topology of the single process (AddInputFrom, 
AddOutputTo) in respect to the other input and output processes. SetInput method is 
redefined to perform a scan over all the input connections and to transfer the actual output 
value of input process to the connection buffer (see WConnection). For sake of efficiency the 
starting point for both input and output connections is stored in each W structure. Since 
connections are usually browsed sequentially, enumeration methods are provided to 
perform high efficient navigation over input and output connections (First, Next, End). In 
derived structures the Process method has to be redefined to perform the core process 
algorithm, taking into account the specific data connection and the data output given by 
each input process, which are already buffered into the corresponding input connection. 
Process method is defined as private function, so it can not be directly called by the user 
since it is automatically managed by the framework during the update step. With this 
strategy the process, which core is still undefined, is able to manage the unknown 
information of the user-defined process. 
Buffer I/O operation (GetBufferLen, ToBuffer, FromBuffer) are redefined to provide data storage 
for actual process output and for the actual specification values for all the input connections. 
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3.6 The connection between two processes: WConnection and WConnectionSpec  
A connection between two process is realised by the Wconnection template structure. Since 
input connections for a given process are embedded inside the process itself, the template 
types are the same used for W structure. WConnection stores references of both source and 
destination processes. A field of OUTDATA type is stored to perform data buffering. In fact 
during the SetInput step on the destination process, the GetOutput method is called over the 
input process and the resulting value is stored inside the connection. While the W structure 
contains the references of both the first input connection and the first output connection, the 
next links to connections are stored into two dynamic lists inside the WConnection structure. 
In Fig. 3.5 an example of this strategy is shown. 
 

 
Fig. 3.5. Connection strategy example. Each process contains the references of both the first 
input connection and the first output connection. Each connection contains the references of 
both the source and the destination process, plus the references to both the next input 
connection and the next ouput connection 

Inside the WConnection structure a field of CONNSPEC type is used to store the specific 
information needed by the destination process to evaluate the output data given by the 
source process. The base class for the CONNSPEC type is the WConnectionSpec structure. 
This structure is an abstract class where only a pure virtual method is defined (Init ). This 
method will be automatically called during the creation of the connection to perform the 
initialisation of the CONNSPEC values on the basis of the user-defined parameters. This 
structure only defines the connection initialisation protocol and must be redefined in the 
derived structures. 

3.7 Grouping processes: WGroup and WProjectionSpec  
Processes may be grouped into a WGroup structure, which template arguments are the same 
of the W structure (OUTDATA, CONNSPEC). Since this structure only contains the 
references to several W structure, the user does not lose the control over each single process. 
Grouping processes results in a logical managing of several objects, which can be added and 
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removed at run-time (Add, Remove methods). 3DObject is the base class for the WGroup 
structure, permitting the redefinition of the virtual functions for flag, synchronization and 
I/O mangement over all the grouped entities. WGroup contains its own flags, with the 
possibility to propagate flags to each grouped entity (AddFlags, RemFlags, SetFlag, IsSetFlag). 
With the same strategy adopted for the 3DWorld structure, WGroup is able to propagate 
rendering and synchronization signals over grouped entities according to their active flags. 
By default these flags are activated only for the group and they are not propagated to the 
sub-entities. Since the WGroup structure has its own geometrical position and volume, a 
Dispose function is supplied for geometrically disposing all the grouped entities according to 
their volumes. Such information will be automatically taken into account during the 
framework rendering processing. 
WGroup contains useful methods to create connections both to other groups and to other 
single processes. Since these methods (AddInputFrom, AddOutputTo) may involve more than 
one entity, connections are realised through projection specifications (WProjectionSpec). 
During the projection initialisation step, the framework looks for projection flags in order to 
perform the user-specific connection strategy. Currently one-to-one, N-to-one, uniform random-
to-N, sub-group-to-N and polar-random-to-N flags are supported (see WGroup.h header file). 
Since the entities inside a group are often browsed sequentially, high efficient iterators are 
defined also for this structure. I/O buffering operations are redefined to automatically join 
I/O buffering operations of each grouped entity. The Wgroup architecture is shown in Fig. 
3.6. 

 
Fig. 3.6. Architecture of theWGroup structure. Many entities may be grouped togheter in 
order to create an high-level entity able to populate the process environment 
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3.8 SensorDriver and ActuatorDriver  
The SensorDriver structure is the starting point for filtering input data coming from the 
generic input system. This structure directly derives from 3DObject and uses IFNeuron and 
IFNeuronGroup structures. These two structures are specifically designed for artificial neural 
networks using the integrate-and-fire model, as it will be discussed later. However at this 
level they are used as buffering structures where the process functions (Set-Input, Update) 
are skipped by the framework. This choice, as it will be shown, does not cause lack of 
efficiency and of generality. 
Since sensor information have to be available before then the framework update step, the 
SensorDriver objects have to be added into 3DWorld by the user before than other process 
object. During the construction of the structure, only the Set-Input flag is set. SetInput 
method will be redefined for the specific hardware in derived structures, where the data 
filtering algorithm will be specified. 
During the initialisation step (InitDriver ) the user will specify the length of the sensor buffer 
data needed during the hardware acquisition step. At this point the driver just allocates the 
memory space in a static array, and it waits for the registration of the IFNeuron entities. 
These entities represent the objects where sensor data will be mapped. Such entities will be 
specifled using the Register method, where the SetInput and Update flags are automatically 
removed from each registered entity. SensorDriver structure will be operative only when all 
of the needed mapping entities will be registered by the user. In order to speed up the 
acquisition process, the references of the IFNeuron objects are indexed during the registering 
phase. Such a strategy permits a direct memory access over all the registered entities. The 
user may choose to switch on/off the driver using the SetPowerOn method. The SensorDriver 
architecture is shown in Fig. 3.7. The ActuatorDriver structure follows a similar architecture. 
 

 
Fig. 3.7. Architecture of the SensorDriver structure. This object represents the base model for 
the interface of a generic input system 
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4. Cortical-based artificial neural networks 
The concept of artificial neural networks is to imitate the structure and workings of the 
human brain by means of mathematical models. Three basic qualities of the human brain 
form the foundations of most neural network models: 
• knowledge is distributed over many neurons within the brain; 
• neurons can communicate (locally) with one another; 
• and the brain is adaptable. 
The terminology with which neural networks are described is derived from these three 
qualities of the human brain, and is as follows: 
• structure of the neuron; 
• network topology; 
• adaptation and learning rule. 
The neurons, or processing units, which make up the neural network are single elements 
and consist principally of four components: 
• a connection function; 
• an input function; 
• an activation or transfer function; 
• an output function. 
A neuron receives signalsthrough several input connections. These are weighted at the input 
to a neuron by the connection function. The weights employed here define the coupling 
strength (synapses) of the respective connections and are established via a learning process, 
in the course of which they are modified according to given patterns and a learning rule. 
The input function compresses these weighted inputs into a scalar value, the so-called 
network activity at this neuron. Simple summation is generally employed here. In such 
cases, the network activity, which results from the connection function and the input 
function, is the weighted sum of the input values. The activation function determines a new 
activation status on the basis of the current network activity, if appropriate taking the 
previous status of the neuron into account. This new activation status is transmitted to the 
connecting structure of the network via the output function of the neuron, which is 
generally a linear function. By way of reference to biological neurons, the activation status at 
the output of a neuron is also known as the excitation of the neuron. 
A process unit is of interest only as a unit of a network consisting primarily of homogeneous 
elements. In artificial neural nets, these elements are generally interconnected to form a rigid 
network structure, as a result of which the learning algorithm only rarely includes provision 
for the formation of new connections and the removal of old connections, such as occurs in 
biological systems. A layered connecting structure is generally employed, whereby the layer 
on which the input signals act is referred to as the input layer; the layer at which the results 
are collected is known as the output layer; and the layers located between these are known 
as hidden layers. The neurons are generally fully connected on a layer-by-layer basis. The 
number of layers often determines the performance of a network. 
A distinction can be made between feedforward, lateral and feedback connections for the 
method of linking the different layers. Both feedforward and feedback connections over 
several layers are conceivable. The connecting structure and the choice of processing units 
determine the structure of a network. In order to carry out a data fusion and a classification, 
the network must be taught a task by presenting it with examples in a training phase. The 
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training phase normally proceeds as follows: random values are initially assigned for the 
weights of the neurons. Patterns from a training data record are then presented to the 
network and the weightings are adapted on the basis of the learning rule and training 
pattern until a convergence criterion, e.g. a defined error threshold, is attained. A test phase 
is then carried out, in which unknown test patterns are presented to the network to establish 
the extent to which the network has learnt the task in hand. Selection of the patterns for the 
training phase is a particularly important aspect. These patterns must describe the task as 
completely as possible, as in later use the network will only be able to provide good results 
for problems which it has learnt. This means that patterns must be selected which cover all 
classes and, where possible, describe the boundary ranges between the classes. 
Most of these architectures are not able to proceed in new learning processes without 
loosing memory of the past learning processes (catastrophic interference) [16, 17]. In order to 
overcome these issues models able to gain short-term priming in co-operation with other 
modules have been developed. In particular, hippocampus-based models operate a pattern 
separation avoiding the catastrophic interference [11, 12]. Input patterns are spread among 
different interconnected modules following the McCloskey and Cohen model [11] consisting 
of several interconnected two-dimensional self-organising maps of artificial neurons (Fig. 
4.1). The Input Entorhinal Cortex and the Output Entorhinal Cortex maps represent 
respectively the input and the output of the net. Input and output maps have the same 
dimension in order to evaluate the activation and deactivation error by a one-to-one 
comparison of neuronal activity. Activation error represents the percentage of neurons that 
are firing in the Output Entorhinal Cortex and that are under threshold in the Input 
Entorhinal Cortex. Deactivation error represents the percentage of neurons that are under 
threshold in the Output Entorhinal Cortex and that are firing in the Input Entorhinal Cortex. 
 

 
Fig. 4.1. Hippocampus model proposed by McCloskey and Cohen; a) Input pattern; b) Input 
Entorhinal Cortex; c) Output Entorhinal Cortex; d)Dentate Gyrus; e) CA3; f) CA1 
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4.1 Learning strategy: selection of neuronal groups  
The Theory of Neuronal Group Selection (TNGS) proposed by Edelman [18, 19], suggests a 
novel way for understanding and simulating neural networks. To take into account this 
theory we have to use the time variable in the learning task, so that neural groups may raise 
from a selection process. This strategy has been adopted by Izhikevich, who simulated a 
minimal neural network which is able to show the property of polychronization [20]. In such a 
network a correspondence between synaptic weights and axonal delays exists as a result of 
the neuron bahaviour. One neuron can belong to many groups, which count is usually 
higher than the count of the neurons theirself. This guarantees a memory capability which is 
higher than the capability reached by the classical neuronal network. Such an architecture 
has been implemented into the framework here presented, giving the possibility to connect 
the neuronal groups to sensory and actuating systems. The advantage of the use such an 
approach makes it possible to gain time-space correlation on input signals. 
The classical approach in artificial neural networks simulation takes into account the 
modulation of the action potential rithm as the only parameter for the information flowing 
to and from each neuron. Such a strategy seems to be in contrast with novel experimental 
results, since neurons are able to generate action potential which are besed on the input 
spike timings, with a precision till to one millisecond. The spike-timing synchrony is a 
natural effect that permits a neuron to be activated in correspondence of synchrounous 
input spikes, while the neuronal activation of the post-synaptic neuron is negligible if pre-
synaptic spikes arrives asynchronously to the target neuron. Axonal delays usually lie in the 
range [0.1 , 44] milliseconds, depending on the type and location of the neuron inside the 
network. Such a property becomes an important feature for the selection of the neural 
groups as it is exposed by Edelman. In the artificial neural network model, the synaptic 
connection are modified according to the STDP rule. If a spike coming from an excitatory 
pre-synaptic neuron causes the fire of the post-synaptic neuron, the synaptic connection if 
reinforced since it given the possibility to generate an other spike in order to propagate the 
signal. Otherwise the synaptic connection is weakened. The values of the STDP parameters 
are choosen in order to permit a weakening that is grater than the reinforcement. Such a 
strategy permit the progressive removal of the unnecessary connections and the persistance 
of the connections between correlated neurons. 

5. Implementation of artificial neurons: towards real-time data fusion and 
processing 
The complexity of a biological neuron may be reduced by using several mathematical 
models. Each of these reproduce some of the functionalities of real neurons, such as the 
excitability in response to a specific input signal. The most accurate model for a biological 
neuron has been developed by Hodgkin and Huxley [13] and it is able to exactly reproduce 
the shape of the action potential of a neuron by taking into account the ionic currents. Beside 
of this, the model is computationally expensive and it takes about 1200 FLOPs (FLoating 
Point Operations) to simulate one millisecond of a single neuron activity. Several attempts 
have been made in order to reduce the mathematical complexity of this model. The most 
effective result has been obtained by the Morris-Lecar model [13], which is able to describe 
the oscillations of the muscular fibers of the giant squid and it is still close to the Hodgkin-
Huxley model accuracy. Unfortunately the computational complexity is still high, since it 
takes about 600 FLOPs for one millisecond of neuron activity. Since these bottom-up 
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approaches are focused on the characterization of the biophysic properties of the cell 
membrane, a different approach has been adopted by Fitzhugh and Nagumo [13], taking 
into account the information of the nervous signal as a temporal distribution rather than an 
action potential shape. This top-down approach leads to the development of parametric 
differential equations with the aim to match them with experimental results. The Fitzhugh-
Nagumo model, wich takes about 72 FLOPS for one millisecond of neuron activity, is based 
on a variant of the Van Der Pol oscillator. Studies on the dynamics of non-linear systems 
swoed a large variety of behaviours. Actually, the use of mathematical analogies seems to be 
the only way to simulate a large number of interconnected artificial neurons. 
For this reason the integrate-and-fire model (and its variant models) is the simpler and most 
used model for classification and prediction tasks in pratical scenarios. 

5.1 The integrate-and-fire model  
The integrate-and-fire model is the simplest model of a spiking neuron that takes into 
account the dynamics of the input. The basis of the integrate-and-fire model is the simple 
compartmental model of a neuron. The equivalent electric schema is showed in Fig. 5.1. 
 

 
Fig. 5.1. The integrate-and-fire artificial neuron model: equivalent electric schema 

The computational implementation of the integrate and fire model follows the schema 
showed in Fig. 5.2. 
 

 
Fig. 5.2. The integrate-and-fire artificial neuron model: computational schema 

An IFNeuron structure has been implement in the framework as a running process directly 
deriving from the W structure. Template arguments have been specialised to obtain an 
OUTDATA as a real number (double precision floating point value) and a CONNSPEC as a 
IFNeuronConnectionSpec structure, which is shown in Fig. 5.3. 
The connection structure for such a process uses a real number to manage the synaptic 
weight. The value may be initialised by the user or randomly chosen by the framework 
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according to the value initialisation parameters. A weight buffer value is needed for internal 
operations during supervised learning using the multi layer perceptron process, which will 
be discussed later. The IFNeuron structure defines the private virtual method Process in 
order to perform the weighted sum of signal coming from input connections. The result 
value is then filtered using the sigmoid function according to the integrate and fire model. 
The structure internally saves a value to speed up the delta-rule algorithm adopted during 
supervised learning. The I/O buffering operations simply manage internal members and 
recall the base class methods. The rendering function provides the graphic visualisation of 
the soma and of the input connections. The architecture is shown in Fig. 5.4. 
 

 
Fig. 5.3. The IFNeuronConnectionSpec structure 
 

 
Fig. 5.4. Architecture of IFNeuron structure 

The IFNeuronGroup structure, which represents a group of IFNeurons, has been derived from 
the WGroup base structure. The IFNeuronGroup structure will be used by high-level 
processes in order to perform supervised and unsupervised learning tasks based on the 
integrate and fire neuron model. 
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5.2 The leabra neuron model 
The Leabra base model [11, 12] is a simplified version of the Hodgkin-Huxley model. Both 
models are shown in Table. 1. 
 

 
Table 1. Top: Hodgkin and Huxley neuron model, based on chemical species. Bottom: 
Leabra model; a) Excitatory conductance; b) Inhibitory k-WTA function; c) Membrane 
potential; d) Activation function 

Leabra uses a point neuron activation function that models the electrophysiological 
properties of real neurons, while simplifying their geometry to a single point. This function 
is nearly as simple computationally as the standard sigmoid activation function, but the 
more biologically-based implementation makes it considerably easier to model inhibitory 
competition, as described below. Further, usingthis function enables cognitive models to be 
more easily related to more physiologically detailed simulations, thereby facilitating bridge-
building between biology and cognition. 
Leabra uses a kWTA (k-Winners-Take-All) function to achieve inhibitory competition 
among units within a layer (area). The kWTA function computes a uniform level of 
inhibitory current for all units in the layer, such that the k+1th most excited unit within a 
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layer is generally below its firing threshold, while the k-th is typically above threshold. 
Activation dynamics similar to those produced by the kWTA function have been shown to 
result from simulated inhibitory interneurons that project both feedforward and feedback 
inhibition. Thus, although the kWTA function is somewhat biologically implausible in its 
implementation (e.g., requiring global information about activation states and using sorting 
mechanisms), it provides a computationally effective approximation to biologically 
plausible inhibitory dynamics. For learning, Leabra uses a combination of error-driven and 
Hebbian learning. Implementation diagrams are shown in Table 2. 
 

 
Table 2. Leabra model: inheritance and collaboration diagrams of structures for leabra 
model implementation 

5.3 The Izhikevich artificial neuron  
Izhikevich recently developed a simple model for an artificial neuron wich is able to 
reproduce all the behaviours showed above [13]. The model takes 13 FLOPs for simulate one 
millisecond of neuron activity and it is based on a top-down approach, using two 
differential equation with four parameters. The introduction of axonal delays shows the 
possibility to create a neural network able to perform classification and prediction tasks. The 
connection of several maps follows and the Spike-Timing-Dependant Plasticity (STDP) rule, 
which permits the implementation of a real time learning rule based on signals which 
continuously flow from input systems. This architecture follows the theories of Edelman 
about the selection as the basis for the learning process. 
The model proposed by Izhikevich for the artificial neuron simulation shows the ability to 
reproduce the same accuracy of the Hodgkin and Huxley model. It can be resumed in the 
following relations: 
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A reset condition is needed: 

 
The four parameters (a, b, c and d) are dimensionless values. The v variable represents the 
membrane potential of the neuron, while u keeps into account the activation of K+ ionic 
currents and the deactivation of the Na+ ionic currents. The I variable takes into account the 
synaptic currents and the bias currents as the input signal of the neuron. Depending on the 
values of the four parameters, the system may have a steady-state (which corresponds to a 
lack of activity in the neuron) and an unsteady-state (which corresponds to the presence of 
activity in the neuron). The reset condition is needed to perform the return of the system 
into the steady state after the neuron has fired. Table 3 shows the values of the four 
parameters in order to obtain the known neuron behaviours. 
In order to implement a network able to use the polychronization feature as it is described 
above, a software module has been realised. An IzhikevichNeuron structure (see Fig. 5.5) has 
been implement in the framework as a running process directly deriving from the W 
structure. 
 

 
Fig. 5.5. The IzhikevichNeuron structure 
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Template arguments have been specialised to obtain an OUTDATA as a real number 
(double precision floating point value) which represents the membrane potential of the 
neuron, and a CONNSPEC as a IzhikevichNeuronConnectionSpec structure, which is shown in 
Fig. 5.6. 
 

 
Fig. 5.6. The IzhikevichNeuronConnectionSpec structure 

The connection structure for such a process uses real numbers to manage the synaptic 
weight and the synaptic channel delay. The values may be initialised by the user or 
randomly chosen by the framework according to the value initialisation parameters. A 
delta-weight value is needed for internal operations during the learning process, as it will be 
discussed later. 
The IzhikevichNeuron structure is initialised using the Init method in order to setup the 
internal parameters (a, b, c, d) which specify the behaviour of the artificial neuron. Several 
initialisation wrapper methods are provided to use predefined behaviours as they are 
showed in Table 3. The STDP algorithm (Fig. ??) is implemented with a time-window of size 
equal to 1000 milliseconds. During this period the delta-weight values are updated 
according to the STDP rule, while weights are updated at the end of each period. During 
each period the structure traces the firing activity and the STDP status of the neuron, storing 
the information in two static arrays. The structure defines the private virtual method Process 
in order to perform the learning task. If the neuron is firning, the Process method reset the 
internal status (u, v) and the STDP value is reported to a value equal to 0.1. Otherwise the 
STDP value is decreased with a time-constant equal to 20 milliseconds. Subsequently the 
input connections are browsed to update input current, whose contribute depends on the 
thalamic input neurons and on those neurons who fired with a timing equal to the 
connection delay. According to the STDP rule, the STDP value of the post-synaptic neuron is 
increased if it fired synchronously with the the pre-synaptic neuorn, and it is decreased if 
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the pre-synaptic fire caused no firing in the post-synaptic neuron. Finally the status is 
updated following the Izhikevich model, and, if 1000 milliseconds are enlapsed, the synaptic 
weights of the connections coming from the excitatory neurons are updated with the actual 
delta-weigth values. During this step the weights are clamped within a convenient range 
and the delta-weight values are decreased with using a decay coefficient equal to 0.9. 
 

 
Table 3. Values of the four dimensionless parameters used to obtain the corresponding 
neuron behaviour. 

The I/O buffering operations simply manage internal members and recall the base class 
methods. The rendering function provides the graphic visualisation of the soma and of the 
input connections. 
The IzhikevichNeuronGroup structure (Fig. 5.7a), which represents a group of 
IzhikevichNeurons, has been derived from the WGroup base structure. The IFNeuronGroup 
structure will be used by high-level processes in order to perform the monitoring of the 
activity of the neurons during the learning and test tasks. Methods are provided to obtain 
the activation percentage (GetActPerc) and to retrieve the sub-group identification relating 
to a specified input pattern. A specific structure (ARI_ING_Record ) has been realised to 
store the neuron reference and the activation time for each neuron belonging to the sub-
group. Such records can be enumerated using the the iterator methods (First, End, Next, 
Get). 
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Moreover, an IzhikevichMap structure (Fig. 5.7b) has been derived from W base structure in 
order to speed-up the artificial neural group processing. This structure includes all the 
previous described structures, optimising the memory usage and computational efficiency. 
 

 
Fig. 5.7. a) The IzhikevichNeuronGroup structure. b) The IzhikevichMap structure 
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A ThalamicRandomSensorDriver structure has been developed to train the architecture with 
random signals. Such signals are the basis of the cortico-thalamic interplay of neural 
assemblies and temporal chains in the cerebral cortex. A Mic-SensorDriverStructure has been 
used to test the architecture with audio signals. For such signals the power spectrum has 
been obtained using the ARI_FFT structure. Both structures are showed in Fig. 5.8. 
 

 
Fig. 5.8. a) The ThalamicRandomSensorDriver structure. b) The MicSensorDriver structure 

6. Conclusions 
In this work authors describe a high-efficiency architecture for parallel sensory fusion and 
real-time management of heterogeneous multi-transducers data processing. The interfaces 
with the external sensors and actuators, the specific control and processing methods and the 
data flowing through inner communication channels can be defined. For such entities the 
framework offers extendable structures, whose base implementation allows the realisation 
of high-efficiency data processing.Systems equipped with multiple transducers, tasks 
execution that are running as cooperative processes, off-line and real-time data aquisition 
and analysis tools, general stand alone applications represent some of the potential 
application areas. 
A library-oriented interface was preferred to a user-oriented interface. Real-time analysis 
and actuation is gained for all the transducers and for all the running processes. Multi-
process cooperation is possible thanks to a homogeneous communication language. The 
user can create extensions of new models of entities and processes. The data acquisition 
from sensor devices is granted by a protocol interface that is able to dispatch data coming 
from input systems. The data processing may be specified by the user inside the framework 
core. The actuator driving is granted by a protocol interface that is able to dispatch data 
from the framework core. Filters for sensory and actuating systems can be redefined 
according to the particular device technology; the efficiency of the filtering and buffering 
processes over the data coming from sensors and over the data directed to actuating devices 
is delegated to appropriate interfaces. The portability is allowed by a layered structure, an 
abstraction, and by the specification of the I/O drivers. A modular, reusable and object-
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oriented architecture grants a parallel distributed processing, making the framework base 
architecture available to the researcher as a structured programming environment. Such 
features make the framework a solution for high-complex simulation tasks, representing a 
powerful instrument for the development of complex simulation tools operating as off-line 
and real-time applications. 
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