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Abstract—This work is focused on the design and the realiza-
tion of a sensing seat system for human authentication. Such a
system may be used for security purposes in trucks, cars, offices,
and scenarios where human subject authentication is needed and
a seat is available. The sensing seat is realized by a seat coated with
a removable Lycra sensing cover equipped with a piezoresistive
sensor network. Since each sensor consists of a conductive elas-
tomer composite rubber screen printed onto a cotton Lycra fabric,
the sensing cover is able to respond to simultaneous deformations
in different areas. This technology avoids the use of rigid electronic
components and enables the realization of different cover layouts
according to different types of seats. The algorithms for the enroll-
ment, authentication, and monitoring tasks are discussed. A mea-
surement campaign was carried out using data from 40 human
subjects. The authentication capabilities of the system are reported
in terms of acceptance and rejection rates, showing a high degree
of correct classification.

Index Terms—Human authentication, security, sensing seat,
strain sensor.

1. INTRODUCTION

EVERAL companies are currently working to realize com-
S fortable interactive seats. These systems, some of them al-
ready on the market [1]-[4], use different technologies and ma-
terials, but they share the use of sensors that measure the pres-
sure exerted on the seat by the passenger. Actually, the existing
sensing seats are not able to perform the human authentication
task and no result on this topic, even if in a preliminary stage,
was found in literature review. Indeed the sensor technology
used in such existing systems is not adequate to perform the
authentication task. In order to detect and correctly classify the
human profile signature, many sensors should be used and the
hardware architecture would result in a complex and delicate
system. The authors decided to adopt a novel strain sensor tech-
nology in order to realize a versatile sensing seat able to address
the human authentication task. In this work, the authors show the
design and realization of an unobtrusive and versatile sensing
seat system for human authentication that can be employed in
different scenarios such as truck and car pilots, airplane pilots,
plant and office personnel, and, in general, environments where
the security is mandatory and a soft seat is available.
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Fig. 1. Transduction principle of the CE strain sensor.

The proposed system, as part of the Human Monitoring and
Authentication Using Biodynamic Indicators and Behavioral
Analysis (HUMABIO) project for multimodal human authen-
tication [5], is currently being tested in truck and office pilots.
HUMABIO is an EC cofunded Specific Targeted Research
Project (STREP) where new types of biometrics are combined
with state-of-the-art sensor technologies in order to enhance
security in a wide spectrum of applications like transportation
safety and continuous authentication in safety critical environ-
ments like laboratories, airports, or other buildings.

II. SENSING SYSTEM

The sensing seat system is realized by a sensing cover placed
between the seat and an external cover that shields the sensing
layer from the environment. The sensing cover is equipped with
several strain sensors [conductive elastomers (CEs)] grouped in
several patches. The noncommercial sensors [6] used for this
application are developed at the laboratories of the University
of Pisa and they allow piezoresistive sensing fabrics to be real-
ized [7]. The sensors are realized by means of CE composites
that show piezoresistive properties when a deformation is ap-
plied (Fig. 1). In order to develop strain sensors, they can be in-
tegrated into fabric or other flexible substrates. The CE we used
is based on a WACKER Ltd product (Elastosil LR 3162 A/B). It
consists of a mixture of graphite and silicon rubber. WACKER
Ltd guarantees the nontoxicity of the product.

Strain impulses applied to a CE sensor result in a typical
differential voltage behavior, shown in Fig. 2. Sensor response
shows a peak in correspondence to every mechanical transition.
Sensor responses during constant pressure time intervals may
be approximated by decreasing exponential, assuming the local
minimum as the steady-state value. The longer the pressure time
interval, the more the above mentioned approximation is accu-
rate. In order to remove the contribution of high order exponen-
tial, the first-order time constants were extracted by means of
a window filter. This choice allowed quantization errors intro-
duced by the acquisition device in response to rapid transitions
to be avoided and sensor steady-state deformation, related to
slower frequency components, to be maintained.
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Fig. 2. Strain sensor voltage signal and extracted features (b) in response to a strain impulse (a).
TABLE 1
CORRESPONDENCE BETWEEN THE CE STRAIN SENSOR AND THE ELECTRIC MODEL FEATURES
Feature of the variation Feature of the variation of the
of the sensor resistance charging/discharging currents of the circuit Symbol
Initial peak [k€2] Initial peak [A] I1(0)
Steady-state value for Steady-state value
the deformation phase [£€2] for the charging phase [ A] I1(o0)
Time constant of the first-order exponential Time constant for the
components for the deformation phase [s] charging phase [s] T1
Time constant of the first-order exponential Time constant for the
components for the release phase [s] discharging phase [s] T

R3

Fig. 3. Electric model of a CE strain sensor.

Taking into account the first-order components of the sensor
response (resistance variation) to a rectangular stimulation (ap-
plied deformation), the equivalent circuit represented in Fig. 3
can be derived.

The power supply V is the electrical equivalent of the im-
posed deformation. The switch 7'1 (initially open) is closed
and opened in correspondence to the beginning and the end of
the imposed deformation, respectively. The switch 7’2 (initially
open) is closed when T'1 is opened again. Following a simple
analysis of this circuit, it is easy to recognize that the variation
of the charging and discharging currents of the capacitance in
consecutive phases of stimulation are equivalent to the varia-
tion of the resistance of the sensor during its deformation and
the following release, respectively. The circuit parameters R1,
R2, R3, and C can be derived by using the features, extracted
from reference experimental signals, listed in Table 1.

A circuit voltage of 1 V was assumed as the equivalent of
a deformation of 1 mm, while a circuit current of 1 A was as-
sumed to correspond to a variation of the sensor resistance of
1 k2. Values of the features listed above were extracted from
ten cycles of a reference experimental signal and were used to
derive the circuit parameters by means of the following system
of equations:

T = C(Rl ||R2)

L(0) = &

I(0) = 757,
To = C(R2||R3)

According to these ten cycles of stimulation, the solution of
this system provided the results reported in Fig. 4, showing the
time constants 7; and 75 have values of the order of 1 s.

The sensing cover consists of several arrays of strain sen-
sors directly printed onto a Lycra tissue. The overall design re-
sults in a high-impedance circuitry where a reference current
is injected. The high-impedance characteristic allows both sen-
sors and wires to be realized by means of the same technology
and to gain unobtrusivity. Indeed, the use of common electrical
wires is avoided within the sensing cover. Moreover, the power
consumption is near zero resulting in a completely safe system.
A connector plug is placed in one side of the sensing cover in
order to connect the system to the front-end module. The fabric
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Fig. 4. Values of the parameters of the equivalent electric model extracted from ten cycles of a reference experimental signal.

Fig. 5. Sensing seat system. (a) The truck seat. (b) The truck seat equipped with the sensing cover. (c) The truck seat equipped with the sensing cover and with

the external cover.

equipped with distributed and redundant unobtrusive strain sen-
sors guarantees to address plasticity, low dimension, lightness,
and low cost. Since the strain sensors can be directly printed on
the fabric, specific cover layouts may be designed to coat dif-
ferent seat shapes obtaining a good adherence to the seat. As a
result, the sensing seat system does not interfere with the me-
chanical structure of the seat and it is designed as an extension
of the seat itself (Fig. 5).

Several topology layouts were taken into account (series, par-
allel, and quadrupole network of sensors) and finally the best
compromise between the technical complexity and the classi-
fication performance of the system was found using the series
network. The sensing cover prototype is equipped with 28 strain
sensors distributed in 5 sensing patches. Each patch consists
of a series strain sensor array that is driven independently by
the front-end module. As it is shown in Fig. 5(b), two patches
are placed on the bottom side of the sensing cover, while three
patches are placed on the upper side.

The existing sensing cover prototype was tailored to a real
truck seat belonging to a specific truck model. Different layouts
could be developed to handle different types of seats (e.g., office
seats, car seats). It should also be remarked that the seat must be
soft enough to guarantee the sensors to be adequately stretched
as a human subject is seated. Moreover, as it will be explained
below, since the signals supplied by the sensors depend on the
positioning and the initial stretching of the cover, data are con-
sistent only after the cover is mounted over the specific seat (i.e.,

the enrolment signatures are no longer valid if the cover is dis-
mounted and mounted again even on the same seat).

III. DATA ACQUISITION SYSTEM

A front-end device for the signal conditioning was designed
and developed in order to guarantee the flow of data between the
sensing cover module and the data acquisition board (DAQ).
A 44-pin cable connects the sensing cover to the hardware
front-end device that performs a signal conditioning for each
strain sensor channel. The front-end device imposes a reference
current for each patch of the sensing cover and sends the voltage
information to a National Instruments NI-cDAQ-9172 DAQ.
The DAQ is connected to the PC through the USB hub. Once
the system is connected, the signals are acquired in real-time
with a sampling rate equal to 100 Hz. As described below, the
processing application runs asynchronously with respect to the
data acquisition process.

During each measurement, the subject is seated onto the
sensing seat system and is supposed to stay still for 5 s during
the data acquisition process. As it will be discussed later, the
system is also able to automatically establish if the user is still
enough and, if not, then the measurement will be extended
accordingly. As it is shown in Fig. 5(b), each strain sensor
(black strip) is positioned horizontally and, as the user is seated,
will supply a signal over time that is qualitatively represented in
Fig. 2(b). The steady-state value is calculated from the Tpusn
time period and it represents the feature extracted from the
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Fig. 6. Sensing seat system recording protocol. (a) Enrollment task; (b) authentication task; (c) monitoring task.

strain sensor signal. The first-order time-constant Tpysm,,,,
assesses on a value of 1 s, so a few seconds are enough to
estimate the steady-state value Vpysm,, . Since 28 strain
sensors are used, the signature of each measurement consists
of a 28-component voltage vector whose elements represent
the steady-state value of each sensor. Since these elements
are linked to the deformation of the sensors due to the subject
pressure, each signature represents the one-dimensional defor-
mation vector along the vertical axis of the seat. As a result,
the voltage vectors available for each measurement and for
each predefined position are related to the pressure exerted by
the subject on the seat [8]-[10]. In this work, the steady-state
voltage vectors are used as a biometric signature of the subject.

IV. RECORDING PROTOCOL

The recording protocol was defined as an interactive proce-
dure where the subject cooperates with the system in order to
perform the enrollment and authentication tasks [Fig. 6(a), (b)].
The monitoring task is performed in real time by the system and
the authentication procedure has to be repeated if the absence of
the subject is detected [Fig. 6(c)]. During the enrollment and the
authentication steps, the user is asked to sit in turn in two pre-
defined positions. The first position requires the subject to be
normally seated and to be in contact with both the bottom and
the upper side of the sensing cover. In the second predefined po-
sition, the subject leans forward so he is not in contact with the
upper side of the sensing cover.

In the case of the enrollment procedure, the new subject is
asked to repeat the measurement ten times for each predefined
position, while just one measurement for each predefined posi-
tion is carried out during the authentication procedure. During
the repeated measurements, the subject remains seated and is
instructed by the system to move only the torso to switch be-
tween the two predefined positions. No specific requirement is
needed for feet, hand, or arm placement and the subject should
stay seated naturally. Each measurement requires a few seconds
to ensure the steady state is gained for each strain sensor signal
as shown in Fig. 2(b). During data acquisition, a measurement
quality level is evaluated on the basis of the steady-state changes

: Server
I DAQ [ DrlverF Task

Client
Task

L
| ——1"

Enrolment

GUI DB

Authentication Monitoring

Fig. 7. Server side sensing seat system block schema.

of the signals belonging to each strain sensor. The measurement
quality increases as the steady-state values become stable. The
measurement is valid if the quality level is above a predefined
threshold over a 5-s period. Adopting this strategy, each mea-
surement requires at least 5 s, depending on how well the sub-
ject cooperates with the system.

V. SOFTWARE ARCHITECTURE

Since the sensing seat system is a biometric system, the soft-
ware architecture was developed as a software library whose
public interface follows the protocol supplied by the BioSec API
that uses the open source BioAPI layer [11], [12]. Such an in-
terface ensures data security and ethical issues to be addressed
and makes the system able to be easily employed in different
application scenarios.

Internally, a server task runs and performs the data acquisi-
tion through a driver layer that communicates with the DAQ.
The server task asynchronously sends notification messages to
the client task that runs when the enrollment, authentication, or
monitoring procedures are active (i.e., the capture process is re-
quested by the client side, Fig. 7). For each user enrolled in the
system, a personal classifier is built and trained on the basis of
data stored during the enrollment stage. Since each classifier is
designed to discriminate whether the claiming subject is an im-
postor or not, biometric rates versus the decision threshold are
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subsequently calculated: false acceptance rate (FAR), true ac-
ceptance rate (TAR), false rejection rate (FRR), and true rejec-
tion rate (TRR). On the basis of the intersection of the FAR and
FRR curves, the equal error rate (EER) is evaluated and an op-
timal threshold is obtained for each classifier.

From the client side, the sensing seat system transparently ap-
pears as a biometric authenticated sensor able to perform data
capture during the enrollment and authentication procedures.
During the data capture process, an internal graphical user in-
terface implements the recording protocol and interacts with the
human subject. The result of the capture process includes the
claiming subject identifier, the measurement date time, the mea-
surement quality level, and the array of the steady-state value of
the signals acquired from each strain sensor. The sensing seat
modality provides the templates matching functionality on the
basis of data previously stored during the enrollment stage and
data belonging to the actual authentication stage, supplying a
biometric score containing the results of the internal classifica-
tion modules.

As an enrollment or authentication session is successfully
completed, the training step is repeated in order to take into ac-
count the new extracted signatures. In particular, since for each
subject only the ten most recent measurements are loaded from
the database, the described procedure guarantees the adaptation
of the system on the short-time small changes in the physical
structure of each subject.

During the monitoring task, the processing system runs con-
tinuously in parallel with the acquisition system. Since the no-
body user is an enrolled user as well as the other real users, the
system is able to detect his presence (i.e., nobody is seated on the
sensing seat). Starting from this information, the system is able
to detect if the user must repeat the authentication procedure.
Due to the mechanical and chemical properties of the adopted
sensor technology, the voltage states covered during the strain
and the subsequent release of the sensor are not the same. Since
this hysteresis effect does not interfere with the steady-state
value, the system is able to detect the presence of an impostor
that tries to sit down just after a few seconds a granted user left
the sensing seat.

VI. CLASSIFICATION MODULES

The preliminary prototype of the sensing seat system was
tested using different classification modules over the same data:
minimum distance classifer (MDC), support vector machine
(SVM), principal component analysis (PCA) [13], probabilistic
neural networks (PNNs), multilayer perceptron (MLP) [14],
and Kohonen self-organizing map (KSOM). Except for MDC,
all the other modules showed a high degree of classification
capability. Since the authentication system is designed to be
finally implemented using a low-cost microcontroller where
the computational efficiency (in terms of memory space and
computing time) has to be taken into account, the authors
decided to employ the MLP and KSOM classifiers within the
final prototype. Indeed, while SVM, PCA, and PNN require
enough memory space to internally store the reference data
(i.e., the training set), the MLP and the KSOM show a higher
training computing time but, on the other hand, they need a low
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memory space to save their trained status (synaptic weights)
and a very low computing time to perform a test step (useful
in real-time application and especially during the monitoring
task execution). Due to the above-mentioned reasons, a KSOM
and an MLP were employed for each of the two predefined
positions and for each user enrolled into the system. That is,
each subject is associated with four classification modules.

Each module receives the input vector from the capture
process. The input vector is an array of voltage information
whose elements are the normalized output of the sensing seat
system (each element is a floating point value representing
the differential of voltage potential measured at the ends of
each strain sensor). Each classifier receives the filtered input
data (low-pass filter with a cut frequency equal to 10 Hz). The
sensing seat system is equipped with 28 strain sensors, and the
input vector is denoted as X = (z1,2,...,2N) with N = 28.

Each personal classification module belonging to a particular
human subject is trained to detect whether the claiming subject
is an impostor or not. That is, each module performs the clas-
sification task over two classes: the subject is who he claims to
be; the subject is an impostor.

A. Kohonen Self-Organizing Map (KSOM)

A KSOM [15], [16] maps the original space into a two-dimen-
sional net of neurons in such a way that close neurons respond to
similar signals, in order to solve classification tasks and to find
structures in data. KSOMs are unsupervised neural networks;
i.e., they exploit similarities of samples apart from the class to
which they belong. In the unsupervised training process, the
synaptic weight vectors of the artificial neurons of the KSOM
are adapted by means of the training data set examples in such
a way that the KSOM supplies the best possible representation
to the training data set. The synaptic weight vector of an artifi-
cial neuron of a KSOM corresponds to the feature vector of an
object in the feature space under study.

In this work, the integrate-and-fire neuron model was used
and the winner-takes-all training strategy was adopted using a
distance-based learning method. A decay factor over epoch time
was used for both the learning rate and the learning radius. Ac-
cording to the Kohonen map topology, all the elements of the
input vector are connected to all the artificial neurons of the
KSOM.

For each input vector X = (z1, 23, ..., zy), the squared dis-
tance D3 = Zf\;l(:vz — wj ;) of each jth unit from the input
vector is calculated. The unit z belonging to the minimum dis-
tance (i.e., D? = min;{D3}) is the winning unit. The weights
wj ; of the sth synaptic connection of the jth neuron at the ex-
ample time ¢ and at the epoch time 7', is modified as follows:

Aw;;(t) = a(T)r;.(T) [zi — wji(t — 1)]

where
1) a(T) = faa(T — 1) is the learning rate with a decay
factor fq; _ _
2) 7;.(T) = e=(@.:/7(T)) is the feedback function of the
neuron j to the winning neuron z;
3) d; . is the Euclidean distance between the jth and the
zth units within the two-dimensional Kohonen map;

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on March 16,2010 at 16:25:12 EDT from IEEE Xplore. Restrictions apply.



456 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 3, SEPTEMBER 2009

4) o(T) = f,o(T — 1) is learning radius with a decay
factor f,.

After the training process, a supervised labeling step is per-
formed. Cluster labels are assigned to the individual artificial
neurons. This is done via the interpretation of the content of the
synaptic weight vectors (feature vectors) of the artificial neu-
rons. Here the same label can be assigned to several artificial
neurons so that each cluster can be represented by several artifi-
cial neurons. After validation of the KSOM from examples of a
test data set, performance of the classification task is commonly
evaluated using the above-mentioned confusion matrix. In order
to check the generalization capability of the neural network, a
cross-validation process is carried out.

In this work, a KSOM with 8 x 8 units was adopted,
the parameters were set to «(0) = 0.9, f, = 0.85,
o(0) = maz;;{d;j:}. f = 0.9, and a training step of
5000 epochs was performed.

B. Multilayer Perceptron (MLP)

The MLP [17] is an artificial neural network, allowing repre-
sentation of the relationships between input and output values.
This type of network is trained with the help of a supervised
learning method, i.e., input and output values are specified and
the relationships between them learned. The neural network ap-
proximates every nonlinear mapping of the form y = f(x).
Every data record consists of input data and the corresponding
output data. The MLP learns the input—output behavior of the
system examined via a training data set. In the training phase,
for each data record, each activation function of the artificial
neurons is calculated.

In this work, the integrate-and-fire neuron model was used
and the back-propagation training strategy was adopted using
the delta-rule learning method. A decay factor over epoch time
was used for both the learning rate and the momentum. Ac-
cording to the MLP topology, each element of the input vector
is connected to a correspondent unit within the input layer. One
hidden layer was employed, where each unit is connected to
each unit in the input layer and to a bias unit. Each unit of the
output layer is connected to each unit of the hidden layer and to
the bias unit.

The weight w;; of a generic neuron % at the example time
t and at the epoch time T, according to the input vector X =
(z1,%2,...,2N) is modified on the basis of a well-established
technique, the propagation of the resulting error between the
input and the output values. The MLP is able to train itself by
propagating the resulting error § backward following the back-
propagation algorithm. ¢ is calculated as follows:

f'(I;)(z; — 0)|7 € output layer
5 = (L) Y (biwj;)|j € hidden layer

and adaptation of the weights results in
Aw;i(t) = a(T)oiwi + v(T)Awji(t — 1)

where
1) z; is the target value for the 7th unit of the output layer;
2) o; is the output value of the :th unit of the output layer;

3) I is the weighted sum of all signals which are active at the
input connections of the jth unit;

4) f’ is the derivative of the activation sigmoid function f
used to compute the output of the unit;

5) wj; is the weight of the connection between the jth unit
(post-synaptic neuron) and and the sth unit (pre-synaptic
neuron);

6) a(T) = faa(T —1) is the learning rate with a decay factor
fas

7) Y(T) = fy7(T — 1) is the momentum with a decay factor
! s

8) x; is the input data at the concerned connection.

The response of the MLP is a boolean vector; each element rep-
resents the activation function of an output neuron. After the
training process, the performance of the classification task is
commonly evaluated using the confusion matrix. The generic
element r;; of the confusion matrix indicates how many times
as a percentage a pattern belonging to the class ¢ was classified
as belonging to the class 7. A more diagonal confusion matrix
corresponds to a higher degree of classification. Since each pat-
tern may be confused with more than one pattern, the sum of
each row and column may differ from the value of 100%. In
order to check the generalization capability of the neural net-
work, a cross-validation process is carried out.

In this work, 28 units were used in the input layer, 10 units in
the hidden layer and 1 unit in the output layer. The parameters
were set to a(0) = 0.9, fo, = 0.85,7(0) = 0.9, f, = 0.9, and
a training step of 5000 epochs was performed.

C. Biometric Rates

For each measurement, the 28-components steady-state
voltage vector is sent to the classification modules (one KSOM
and one MLP) corresponding to the specific predefined po-
sition. As the enrollment task is completed and the training
step is performed, the KSOM will show two regions belonging
to the two output classes (impostor, not an impostor). During
the authentication task, the KSOM response is supplied by
the region the winning unit belongs to. The MLP response is
supplied by the output unit according to its activation level.

After the training phase, the classification level and a
threshold level were taken into account for each classification
module according to the following criteria.

1) KSOM: The winning neuron has the minimum Euclidean

distance between its synaptic weights and the input data;
a low distance value corresponds to a high classification
level, while a high distance value corresponds to a low
classification level; if the distance value of the winning
neuron is higher than the threshold level, the system rejects
the subject even if he is not classified as an impostor by the
KSOM.

2) MLP: A low activation value of the output unit corresponds
to a low classification level, while a high activation value
corresponds to a high classification level; if the activation
value of the winning neuron is below the threshold level,
the system rejects the subject.

Biometric rate (FAR, FRR, TAR, and TRR) curves versus the
threshold level are computed with the aim to find the EER for
each classification module. The threshold level corresponding
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TABLE II
ACCEPTANCE AND REJECTION RATES USING THE PERSONAL CLASSIFICATION
MODULES AFTER THE TEST PHASE. VALUES ARE AVERAGED OVER
THE CLASSIFICATION MODULES BELONGING TO ALL THE ENROLLED
SUBJECTS. EACH CLASSIFICATION MODULE USED THE INTERNALLY STORED
OPTIMAL THRESHOLD LEVEL THAT CORRESPONDS TO THE EER FOUND
DURING THE TRAINING PHASE

TAR FAR TRR FRR EER

KSOM (15% position) 90.4% 54% 946% 9.6% 2.8%
MLP (15¢ position) 932% 43% 957% 68% 22%

KSOM (2"¢ position) 93.2% 4.0% 96.0% 6.8% 2.0%
MLP (2"¢ position) 943% 3.0% 97.0% 57% 1.7%

to the EER is then used, within the test phase, as the optimal
threshold for the classifier.

VII. MEASUREMENT CAMPAIGN AND RESULTS

Tests were conducted on 40 human subjects (10 repeated
measures with 2 predefined positions) using 20 couples (10 men
and 10 women ranging from 20 to 40 years old) of physically
similar subjects (weight ranging from 60 to 90 kg and height
ranging from 160 to 180 cm), obtaining a total of 800 samples
evenly distributed among postures. The measurements were
carried during a time period of 20 days, performing one ses-
sion every two days. During each session, four subjects were
taken into account. Each subject used different clothes at each
session. For each enrolled subject, the personal classifiers were
trained on the basis of half of the data belonging to the subject
and to half of the impostors. All the combinations were per-
formed using a leaving-half-out cross-validation strategy. After
the evaluation of the biometric rates, the optimal threshold
was found for each classification module and the test step
was performed over the remaining half data. Test results are
reported in Table II.

The correct recognition percentage (TAR) assesses on 93%
+/— 2% (an enrolled subject claims to be himself, FRR =
7% + | — 2%), while the correct rejection percentage (TRR)
assesses on 96% +/— 2% (an unenrolled subject claims to be
an enrolled subject, FAR = 4% + / — 2%). The continuous
monitoring was also tested. The system is currently able to rec-
ognize the absence of the human subject in less than 1 s with a
100% success (more than 100 measurements were carried out).

Besides the security role, the reported FRRs seem too high
to ensure a convenience factor within automotive applications.
However, according to the HUMABIO project concept, a
multibiometric strategy should be employed to decrease the
final FRR and to use the sensing seat system in real scenarios
addressing both use convenience and security issues. Indeed,
multibiometric systems demonstrate the noteworthy advantages
over their unimodal counterparts [18], [19]. Multimodal tests
were conducted in a truck simulator at VOLVO using three
cooperative authentication systems: sensing seat system, face
recognition system, and voice recognition system. During the
multimodal tests, 20 users were enrolled and the authentication
procedure was carried out taking into account enrolled subjects
and impostors. As a result, while the single modalities showed
high FRR values (7%, 2%, 1.5%, respectively), the multimodal
fusion based on SVM showed a final FRR of 1% +/— 0.5%.
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VIII. PERFORMANCE FACTORS

The classification algorithms of the sensing seat system are
based on the analysis of the steady-state value of the signals ac-
quired from the strain sensors of the sensing cover. During the
enrollment and the authentication tasks, the human subject is
asked to cooperate with the system through an interactive pro-
cedure. As a result, each factor that affects the stability of the
signals acquired from the strain sensors may decrease the per-
formance of the system.

A list of restrictions, parameters, and factors that affect the
performance of the sensing seat recognition module are reported
below.

1) Specific restrictions and parameters (environmental and
other) that affect the performance of the sensing seat recog-
nition module are as follows.

a) Environmental temperature:
i) Temperature variation: the resistance tempera-
ture coefficient (RTC) of the Elastosil LR 3162
A/B is equal to 0.08 Q - °K™", resulting in a
very small resistance variation due to tempera-
ture effects compared to the variations induced
by the strain sensor stretching (1 k2 - cm™!);

ii) Temperature range: according to WACKER Ltd
specifications [20], the electrical properties of
the Elastosil LR 3162 A/B product are almost
completely independent from temperature in
the range from —50 °C to 4200 °C.

b) Movements and vibrations [21] may cause the steady-
state value of the strain sensor signals to be not stable.
This may subsequently cause a decrease of the perfor-
mance of the classification algorithms.

i) The subject is moving while the signals are cap-
tured from the sensing cover system;

ii) Environmental vibrations (e.g., the truck or car
engine is running) may cause movements of the
subject even if the subject cooperates to stay
still.

¢) Changes of the human profile:

i) presence of wallet and/or coat;

ii) changes in the way the same human subject sits
in each predefined position;

iii) changes in the human subject’s profile (aging,
changes in weight).

2) List of factors that may cause system failures:

a) malfunctioning of the power supply module;

b) malfunctioning of the front-end hardware module;

¢) malfunctioning of the DAQ.

The sensing seat system is not equipped with a temperature
sensor, so the system will not be able to automatically compen-
sate for temperature variations. However, as it is shown in 1(a)i,
these effects are negligible within the operating range described
in 1(a)ii.

Points 1(b)i and 1(b)ii will be monitored using the quality
of measurement property provided by the capture process. This
property is an index of the signal stability over time during the
capture process. Point 1(c)i should be addressed by the user in-
terface, asking the subject to remove wallets and coat and to
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empty his/her pockets before performing the enrollment and au-
thentication processes. Points 1(c)ii and 1(c)ii will result in the
human subject signature to be not so “far” from the signature
information stored into the database. However, the time-stamp
information for each measurement in the signature is taken into
account for these kinds of situations. It is supposed that the
changes (the way of sitting, the weight, the aging) will be minor
especially if they are considered over a short period of time.
Once the user is enrolled, the time-stamp is saved into the sig-
nature for each measurement (related to several repeated mea-
surement for each predefined position). If the user continuously
performs the authentication task in the sensing seat system (let
us say, once a month at least) and if he/she will be correctly
authenticated, the new measurements (probably a bit different
from the previous measurements) should be saved in the data-
base and the classifiers should be trained again taking into ac-
count a last-in-first-out (LIFO) queue of measurements. Points
2a, 2b, and 2c may be taken into account performing a test of
a baseline measurement (i.e., matching the signature acquired
while nobody is seated on the sensing seat).

IX. CONCLUSION

In this paper, the development of a novel sensing seat system
based on an unobtrusive piezoresistive sensor array was de-
scribed. The main result is a positive assessment of the use of
the reported sensing seat in the authentication task, showing the
robustness of the system in terms of biometric rates. Another
relevant result is the assessment of the strain sensor technology
and of the classification modules based on artificial neural net-
work personal classifiers. The modular software library com-
pliant with BioAPI makes the sensing seat system able to act in
different scenarios and to be employed together and in cooper-
ation with other authentication systems.

The proposed system is still under development even if the
actual prototype was successfully tested within unimodal and
multimodal environments. Actually the system needs the coop-
eration of the subject in order to work properly and other open
issues include the performance study in extreme environmental
conditions (e.g., very low and very high environmental tempera-
ture scenarios). Moreover, the strain sensor stability over time as
well as its chemical properties must be investigated thoroughly
in order to study the sensor degeneration over time (i.e., sensor
aging). Additionally, in order to make the system really unob-
trusive, the objects inside the clothes and the pockets (e.g., keys,
wallet) should be treated as a point of disturbance to increase the
final user convenience. Even the sensing seat system is now fo-
cused on the analysis of static data (i.e., steady-state values of
the signals), the study of the dynamics of the signals should be
investigated to improve the monitoring task performances. All
the above mentioned topics will be taken into account in future
developments.
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