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Abstract
Electronic nose (e-nose) architectures usually consist of several modules
that process various tasks such as control, data acquisition, data filtering,
feature selection and pattern analysis. Heterogeneous techniques derived
from chemometrics, neural networks, and fuzzy rules used to implement
such tasks may lead to issues concerning module interconnection and
cooperation. Moreover, a new learning phase is mandatory once new
measurements have been added to the dataset, thus causing changes in
the previously derived model. Consequently, if a loss in the previous
learning occurs (catastrophic interference), real-time applications of
e-noses are limited. To overcome these problems this paper presents an
architecture for dynamic and efficient management of multi-transducer
data processing techniques and for saving an associative short-term
memory of the previously learned model. The architecture implements an
artificial model of a hippocampus-based working memory, enabling the
system to be ready for real-time applications. Starting from the base models
available in the architecture core, dedicated models for neurons, maps and
connections were tailored to an artificial olfactory system devoted to
analysing olive oil. In order to verify the ability of the processing
architecture in associative and short-term memory, a paired-associate
learning test was applied. The avoidance of catastrophic interference was
observed.

Keywords: electronic noses, multi-transducer data processing, catastrophic
interference, associative short-term memory

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The increasing complexity of multi-transducer architectures
requires high-efficiency interconnection and cooperation of
several control and processing modules. A first step towards a
standard design of multi-transducer communication protocols
and interfaces was recently defined in IEEE 1451 [1–3].
Enhancing the reliability of high-level processing systems
represents the next critical step. Multi-transducer network
modules often include tasks such as control, data acquisition,
data filtering, feature selection and pattern analysis [4–6].

Heterogeneous techniques derived from chemometrics, neural
networks and fuzzy rules, which are all used to implement
such tasks, may lead to complications regarding module
interconnection and cooperation. According to some authors
establishing a multi-channel communication among common
artificial neural networks tools, feature extraction and selection
processes, and acquisition and control systems may be
unreliable [7–9]. Moreover, high-level interfaces often do
not allow the architecture and/or the processes topology to be
adapted at run time. As a result, complex processing methods
have to be designed. In electronic nose (e-nose) applications,
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the classification task is often performed by working memory
models inspired by biology and based on artificial neural
networks. Unfortunately, most of these architectures are not
able to proceed in new training processes without losing the
memory of previous learning (catastrophic interference) [10].

In order to overcome control and process cooperation
issues, we present an architecture for a dynamic and
efficient management of multi-transducer data processing
techniques. The classification task was implemented within
the architecture as a hippocampus-based model that is able to
gain short-term priming in cooperation with other modules in
order to avoid catastrophic interference. From a biological
point of view, the hippocampus plays a critical role in
the formation of episodic memories as well as the rapid
encoding of new information. Moreover, it seems to operate
as a sort of content addressable memory system (pattern
completion). From a computational point of view the model
of the hippocampus architecture proposed by McCloskey and
Cohen was recently improved by means of the artificial neuron
model proposed by O’Reilly [11, 14]. O’Reilly also showed
how existing artificial neural network models are not able to
avoid catastrophic interference.

We propose a homogeneous software framework that
can simultaneously manage transducer devices and data
processing. The framework is realized as a software library in
order to exploit the potential of the computational algorithms
and to enhance the performance of artificial neural network
processing techniques. Synchronization among modules and
data flow is managed by the framework and has considerable
advantages when heterogeneous complex dynamic processes
are being simulated. Specific control processes, pattern
recognition algorithms, sensory and actuating interfaces can
be created by inheriting base structures from the framework.
The framework’s base architecture and the implementation of
the hippocampus-based working memory processing module
are described.

We tested the architecture with an artificial olfactory
system for the analysis of olive oil samples. The modules
derived from the framework base structures were tailored to the
electronic nose for real-time control and processing of multi-
sensor signals. The architecture was trained to allow an olive
oil sample to be associated both with its geographic origin and
with its quality class. A paired-associate learning test (AB-
AC test) [12], usually adopted by clinical neuropsychologists
to assess human short-term memory, was applied in order
to assess the capability of the processing architecture to
perform continuous associative short-term memory learning.
Results showed that continuous learning of new associations
does not interfere with the memory of the previously learned
associations.

2. Architecture design

We developed a framework for the management and
synchronization of data and processes in which control
processes and pattern recognition algorithms are defined as
application processes. A block scheme of the framework
architecture and of the flow of information is shown in
figure 1. Such processes inherit properties and functionalities
from the framework base structures, taking advantage of the

Figure 1. The framework architecture for the parallel management
of multiple processes.

process automation provided by the framework core. The
framework core and the application processes are interfaced
to the outside world through a framework I/O interface.
The framework I/O interface was developed in order to act
as a buffer for the flow of information coming in from
the sensors and out to the actuators. With this strategy,
sensory fusion is gained thus enabling an abstraction with
respect to the specific transducer technology. Signals coming
from the sensors are gathered in parallel and are encoded
following a standard protocol. The encoded information
is received by a specific filter for each sensor, which then
sorts them to a framework I/O interface. For each actuating
system a mirror image architecture was reproduced of the
one described for the sensors. The information available
in the framework I/O interface is encoded by a filter using
the same standard protocol. A specific interface for each
actuator pilots its specific hardware system. This architecture
allows a communication language between the framework
core and sensory and actuating devices to be set up. This
guarantees increased flexibility thanks to the presence of
interfaces that act as interpreters for the specific hardware,
and filters which specify the way the framework core ‘senses’
and ‘communicates’ the information.

Communication channels are established as connections
between application processes. The domain of data flowing
through connections and the flow chart of the application
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Figure 2. Hierarchical and collaboration chart of the framework base structures.

processes can be designed appropriately according to a specific
application. Processes and connections are managed at
run time and they can be manipulated under request. The
presence of dynamic structures implies configurable resource
management, so the framework offers an optimized interface
for enumeration and direct access requests. In addition, a
spatial definition of the entities involved in the framework
can be supplied, making this information available to the
control system for subsequent processing. To guarantee the
execution of real-time applications, an inner synchronization
signal is provided by the framework core to the processes
and to the framework I/O interface. This means that a time–
space correlation can be achieved. Such dynamic geometric
representation can be visualized by a high-efficiency 3D
graphic interface, which helps in debugging the system.

2.1. The framework core

The framework architecture was designed as a hierarchical
structure whose root is a manager module. It is realized
as a high-level container of generic modules representing
the environment in which process modules and I/O filtering
interfaces are placed. All these modules inherit low-level
properties and functionalities from a base module realized as
an element that is able to populate the process environment.
Virtual and pure-virtual functionality strategies were applied
in order to obtain an abstraction with respect to the generic
application task. In this way the core can process user-defined
functionalities without being reprogrammed. Moreover,
modules can be grouped recursively in order to share common
properties and functionalities of entity modules belonging
to the same type. Communication channels are realized as
connections through specific projection types that specify the
connection topology. All modules are realized as running
processes while their control and synchronization is managed
by the framework. A real-time approach for data analysis
takes advantage of the framework capability to manage
interconnected modules through efficient communication
channels. In this way the application can control all the
modules of the elaboration chain, including analysis protocol
management plus sensory and actuating interfaces.

Connections are delegated to dispatch synchronization
information and user-defined data. The filtering interface
modules are able to drive the transducer hardware and
dispatch information to process modules. All base modules
manage dynamic structures and are designed to maintain
data consistency if the environment state changes. This

Figure 3. Hippocampus model proposed by McCloskey and Cohen;
(a) input pattern; (b) input entorhinal cortex; (c) output entorhinal
cortex; (d) dentate gyrus; (e) CA3; (f) CA1.

behaviour permits the execution of dynamic and real-time
parallel distributed processing, while synchronization and data
flow are managed by the environment. The framework core
contains the processes needed to drive the hydraulic section
consisting of the mass flow controller (MFC), the four-way
two-state valve and the automatic system for vial selection.
The output of each actuator module is a low-level instruction
for the actuator hardware, i.e. the control of the hydraulic
section. The hierarchical and collaboration chart of the base
structures is shown in figure 2. Each block represents a
software entity, i.e. an object with methods and attributes,
developed within the framework architecture. The arrows
between entities indicate inheritance relationships, while the
lines indicate collaboration relationships.

2.2. The classification module

In this study the classification task was performed by an
artificial model of a hippocampus-based working memory
processing module. The model operates a pattern separation
that avoids catastrophic interference. In accordance with
McCloskey and Cohen’s architecture [13], input patterns are
spread among several interconnected two-dimensional self-
organizing maps of artificial neurons (figure 3).
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The input entorhinal cortex and the output entorhinal
cortex maps represent the input and the output of the net,
respectively. Input and output maps have the same dimension
in order to evaluate the activation and deactivation error by
a one-to-one comparison of neuronal activity. The activation
error represents the percentage of neurons that are firing in
the output entorhinal cortex and that are under threshold in
the input entorhinal cortex. The deactivation error represents
the percentage of neurons that are under the threshold in
the output entorhinal cortex and that are firing in the input
entorhinal cortex. In our application artificial neurons and the
learning algorithm were implemented following the model
proposed by O’Reilly and Munakata [11, 14]. In particular,
their architecture uses a k-winners-take-all (kWTA) function
to achieve inhibitory competition among units within a layer.
This architecture was implemented in the framework and was
applied to the analysis of multi-sensor data signals coming
from an e-nose. The e-nose is used for detecting volatile
organic compounds present in the headspace of olive oil
samples [15].

2.3. The Leabra neuron model

The Leabra base model is a simplified version of the Hodgkin–
Huxley model. The computational model implemented in
this paper is taken from O’Reilly and Munakata [11, 14].
Leabra uses a point neuron activation function that models
the electrophysiological properties of real neurons, while
simplifying their geometry to a single point. This
function is nearly as simple computationally as the standard
sigmoid activation function, but the more biologically
based implementation makes it considerably easier to model
inhibitory competition. Furthermore, using this function
enables cognitive models to be more easily related to
more physiologically detailed simulations, thereby facilitating
bridge building between biology and cognition. Leabra uses
a kWTA function to achieve inhibitory competition among
units within a layer. The kWTA function computes a uniform
level of inhibitory current for all units in the layer, so that
the (k+1)st most excited unit within a layer is generally
below its firing threshold, while the kth is typically above
threshold. Activation dynamics similar to those produced by
the kWTA function have been shown to result from simulated
inhibitory interneurons that project both feedforward and
feedback inhibition. Thus, although the kWTA function is
somewhat biologically implausible in its implementation (e.g.
requiring global information about activation states and using
sorting mechanisms), it provides a computationally effective
approximation to biologically plausible inhibitory dynamics.
For learning, Leabra uses a combination of error-driven and
Hebbian learning.

3. Processing of olfactory signals

The e-nose consists of an array of eight chemo-
resistive conductive polymer sensors interfaced to an
electronic board. Conducting polymers can belong to
conjugate or oligomer families polymerized by chemical or
electrochemical techniques. In this study poly(3,3′-dipentoxy-
2,2′-bithiophenes)-based chemo-resistive layers [16], which

Table 1. List of the main compounds in olive oil, some of which are
responsible for flavours and defects.

Aromas DefectsOthers
Compound Flavour Compound Compound Defect

2-trans-hexenal Fruity Ethanol Hexanol Musty
Hexanal Green Methanol 3-Methyl-1-butanol Fusty
Nonanal Fatty Water Ethylfuran Rancid
3-Pentanone Sweet Acetic acid Winey
1-Pentanol Pungent

change their electrical conductivity in the presence of volatiles,
were deposited onto a substrate in correspondence to two metal
electrodes. The chemo-resistive layers were obtained by a
controlled doping with oxidizing salts in the homogeneous
phase. This procedure was previously studied [17] and
irreproducibilities are negligible. The controlled doping with
different salts and different M/Ox, where M is the number
of monomeric unities of the polymer and Ox is the number
of inorganic salt molecules, allowed us to obtain sensors
with different properties. The responses of these kinds of
sensors to organic vapours vary linearly with the compound
concentration, and the slope is a function of the compound.
In order to evaluate the cross-sensitivity of these kinds of
sensors to different volatiles, the sensors were exposed to
different volatile compounds present in olive oil in saturation
conditions. In table 1 a list of the selected compounds is
reported. The data reported in figure 4 are the responses of
a poly(3,3′-dipentoxy-2,2′-bithiophenes)-based sensor doped
with iron perchlorate at M/Ox = 6. The abscissa shows the
steady-state resistance variation. The sensor was exposed to
volatiles in a random order. The presence of different flavour
components in an olive oil causes the sensor responses to be
affected by high cross-sensitivity. For this reason the use
of a sensor array joined with an artificial neural network is
needed to perform signal processing and classification tasks.

In this work a sensor array composed of eight different
sensors was adopted. The sensor array is lodged in an exposure
chamber where a gas carries the volatile samples. A chemico-
physical interaction occurs between the input volatiles and
sensing layers, resulting in an electric resistance variation for
each sensor. The response of each sensor is thus an analogue
signal versus time. Signals are acquired and digitized by the
electronic board and are managed by the framework interfaces.

The e-nose can be divided into a hydraulic and an
electronic section. The hydraulic section consists of a
sampling system and an exposure chamber. The electronic
section was developed using current techniques for noise
reduction, and consists of a central processing unit, a digital
section and an analogue section. This system allows us to
acquire reliable data from conducting polymer sensor arrays
and to automatically control the sampling system and the
experimental parameters. The sampling system consists of
a bottle of ultra-pure nitrogen, an MFC, a four-way two-state
valve and a system for automatic vial selection connected
to sixteen 125 ml glass vials containing 10 ml solutions
(2.5 µl ml−1) of liquid samples. A block scheme of
the experimental setup is shown in figure 6. Inert
polytetrafluoroethylene tubing and fittings were used for the
connections. A thermo-hygrometer inserted into one fitting
allows the humidity and temperature of the air flow to be
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Figure 4. Steady-state resistance variation of a poly(3,3′-dipentoxy-2,2′-bithiophenes)-based sensor doped with iron perchlorate at M/Ox =
6 after the exposure to olive oil volatile compounds reported in table 1 under saturation conditions.

Figure 5. Hierarchical chart of auxiliary modules developed in the framework for an e-nose control system.

measured. Vials were kept at a constant temperature of 25 ◦C
inside a metallic box. Once the vial is selected by the automatic
system, the four-way two-state valve is used to switch the
system between state 1 (sensors flushed with nitrogen, baseline
acquisition and cleaning) and state 2 (exposure of sensors to an
odorant). The measurement protocol consists of three phases
for each experiment: baseline acquisition (sensors flushed with
nitrogen, figure 6(a)); exposure (sensors exposed to the sample
headspace, figure 6(b)); and desorption and cleaning (odours
flushed away by nitrogen to restore baseline conditions,
figure 6(a)).

Starting from the base models available in the framework
core, dedicated models for neurons, maps and connections
were derived to process signals coming from the e-nose.
As mentioned above, in the framework each entity was
implemented as a running process. Dedicated modules were
also derived in order to dispatch data from the olfactory
systems to the core processes. Synchronization is managed
by a main process with the support of the framework
functionalities. The use of specialized modules derived from
the framework base structures, shown in figure 2, led to the
development of a stand-alone application that could drive the
e-nose hydraulic and electronic sections. Figure 5 shows
the processing and interface tailored modules developed for
the e-nose control system.

The e-nose was used to assess the headspace of 15 Italian
olive oil samples from different regions (Tuscany, Apulia and

(a)

(b)

Figure 6. Block scheme of the e-nose experimental setup.
(a) Baseline acquisition (sensors flushed with nitrogen) and
desorption and cleaning (odours flushed away by nitrogen to restore
baseline conditions; (b) exposure (sensors exposed to the sample
headspace).

Sicily) classified by an official panel test as extra virgin, virgin
and defective. With the aim of replicating the experiment three
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(a)

(b)

(c)

Figure 7. Error mapping during the A-B and A-C tests: (a) untrained network; (b) after A-B training; (c) after A-C training.

Table 2. Standard deviations and mean values of the activation and deactivation errors in the A-B and A-C tests. (a) Untrained architecture;
(b) after A-B training; (c) after A-C training.

A-B test A-C test

Mean Standard deviation Mean Standard deviation

Activation Deactivation Activation Deactivation Activation Deactivation Activation Deactivation
error (%) error (%) error (%) error (%) error (%) error (%) error (%) error (%)

(a) 48.5 54.1 27.3 25 56 46.3 26.4 25.7
(b) 9.3 10.1 5 5 43.2 49.9 29.3 29.8
(c) 15.4 13.2 10.5 6.8 10.9 8.3 5.7 7.2

times, 45 vials (volume 125 ml) were prepared by pouring
10 ml of each of the 15 olive oil samples into three vials, sealing
and then waiting a few hours for equilibration. The headspace
of each vial was conveyed using a gas carrier (nitrogen) with a
flow rate of 200 ml min−1 into an exposure chamber where the
sensor array was lodged. The signals coming from the sensor
array were acquired in parallel with a constant scan rate equal
to 4 Hz and an acquisition time equal to 17.25 s. For each
sensor signal a vector of 69 samplings was obtained. For each
sensor signal the baseline phase consisted of 32 samplings
(8 s), whereas 5 samplings (1.25 s) were acquired during the
exposure phase and 32 samplings (8 s) were acquired during
the desorption phase.

The architecture was trained in order to learn the two
relations that exist in the association of an olive oil both with
its geographical origin and with its quality. This was done with
the constraint that the learning of the second relation must not
interfere with the memory of the previously learned original
one. In order to verify the ability of the processing architecture
in such an associative and short-term memory, a paired-

associate learning (AB-AC test) was applied [12]. Elements A,
representing the output signals of the e-nose for each olive oil,
were associated with elements B and C, which represent the
geographical origin and the quality class, respectively. The
experiment and data processing were controlled at run time
by the main process. During the execution of the training
processes each paired input pattern was mapped onto the input
entorhinal cortex while the association response results were
mapped onto the output entorhinal cortex. During the test
processes, when the input entorhinal cortex did not include the
B or C pattern, the error was obtained by comparing the output
entorhinal cortex to the complete original pattern.

The results of the test processes are shown in figure 7.
For each sample activation and deactivation, a percentage
error is reported in a two-dimensional plane. The first
test on the untrained architecture produced, as expected, a
high classification error (figure 7(a)). Test results after the
execution of the A-B training process are shown in figure 7(b).
As can be seen, a minor misclassification was obtained for
the A-B list, while A-C elements were still not recognized.
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Test results after the execution of the A-C training process are
shown in figure 7(c). Correct associations can be observed for
the A-C list, while memory for the A-B list is still present with
minor misclassifications thus highlighting the avoidance of
catastrophic interference. Table 2 shows the mean activation
and deactivation percentage errors.

The reproducibility of the model was tested on three
repeated experiments. The accuracy was evaluated as the
maximum distance from the mean value of the activation and
deactivation errors in the three experiments. The precision
was evaluated as the standard deviation of the activation and
deactivation errors in the three experiments. An accuracy of
4.8% and a precision of 3.6% were obtained.

4. Conclusions

We have presented an architecture for associative short-term
memory. Our architecture manages multi-transducer data
processing techniques both dynamically and efficiently. The
classification task was implemented within the architecture as a
hippocampus-based model that can gain short-term priming in
cooperation with other modules in order to avoid catastrophic
interference. The architecture was tailored to an electronic
nose devoted to olive oil analysis. In order to verify the ability
of the processing architecture in associative and short-term
memory, olive oils belonging to three different qualities and
to three different geographic origins were assessed by means
of a paired-associate learning test. Our results showed the
avoidance of catastrophic interference.
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